EEE#2022-1-07 JSON X v & — PV EREHHA

JSON Schema Naming and Design Rules V0.8 2022-03-30

UN/CEFACT
UNITED NATIONS
Centre for Trade Facilitation and Electronic Business
(UN/CEFACT)
METHODOLOGY AND TECHNOLOGY PROGRAMME DEVELOPMENT AREA

SPECIFICATIONS DOMAIN

JSON SCHEMA NAMING AND DESIGN RULES
TECHNICAL SPECIFICATION

SOURCE: API TechSpec Project Team

ACTION: For public review

DATE: 30 March 2022

STATUS: Interim Draft v0.8

Disclaimer (Updated UN/CEFACT Intellectual Property Rights Policy - ECE/TRADE/C/CEFACT/ 2010/20/Rev.2)

ECE draws attention to the possibility that the practice or implementation of its outputs (which include but are not limited to

Recommendations, norms, standards, guidelines and technical specifications) may involve the use of a claimed intellectual property right.

Each output is based on the contributions of participants in the UN/CEFACT process, who have agreed to waive enforcement of their
intellectual property rights pursuant to the UN/CEFACT IPR Policy (document ECE/TRADE/C/CEFACT/2010/20/Rev.2 available at
http://www.unece.org/cefact/cf_docs.html or from the ECE secretariat). ECE takes no position concerning the evidence, validity or
applicability of any claimed intellectual property right or any other right that might be claimed by any third parties related to the
implementation of its outputs. ECE makes no representation that it has made any investigation or effort to evaluate any such rights.

Implementers of UN/CEFACT outputs are cautioned that any third-party intellectual property rights claims related to their use of a
UN/CEFACT output will be their responsibility and are urged to ensure that their use of UN/CEFACT outputs does not infringe on an

intellectual property right of a third party.

ECE does not accept any liability for any possible infringement of a claimed intellectual property right or any other right that might be

claimed to relate to the implementation of any of its outputs.

Page 1 of 50

10
11
12
13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

JSON Schema Naming and Design Rules V0.8 2022-03-30

Abstract

This JSON Schema Naming and Design Rules technical specification defines an
architecture and a set of rules necessary to define, describe and use JSON to consistently
express business information exchanges namely via APIs. It is based on the JSON Schema
team’s specification and the UN/CEFACT Core Components Technical Specification. This
specification will be used by UN/CEFACT to define JSON Schema and JSON Schema
documents which will be published as UN/CEFACT standards. It will also be used by other
organisations who are interested in maximizing inter- and intra-industry interoperability.

Page 2 of 50

34
35

36

37

38
39

40
41
42
43
44

45

JSON Schema Naming and Design Rules V0.8 2022-03-30

ADSEFACE ...ttt et e e e et e ettt et e et e e enta e 2
1.1 DOCUMENT HISTORYceutitieutiiieieeiinttetenttnieetestteeeentesreessenseereesesbeennestesmeensensesseens 5
1.2 CHANGE LOG ..ttt ettt st sttt s 5
1.3 JSON SCHEMA NAMING AND DESIGN RULES PROJECT TEAM......ccccecveruerveveriennnens 6
1.4 ACKNOWLEDGEMENTScottiutiniinieetinttetentenieetenteeseensesseemsensesseesessessessesmeensensesseens 6
1.5 CONTACT INFORMATION......cetiiuieniinieetenieeieeresieententtesnensesueensesreeseensesneensesmesnsensesmeens 6
1.6 NOTATION ...ttt ettt eses sttt et sh et et et ettt ettt e b et eaesenesenesenenene 6
1.7 ATUDIENCE ...ttt ettt ettt ettt e ettt ettt b e nenenenens 7
2 INTRODUCTION...ucoiuinrensenssicsersesssisssssessassasss 8
2.1 OBIECTIVESututatatttteestseeeste sttt s st esesesesesesesesesestatststseaeneatatasasesesesasesesesesesesenenes 8
2.2 REQUIREMENTStitiieiieeeeeeeeieeeeee e e e e ei et e e e e e esaaaeeeeeeseeessssaneseeesseennnesneeeeessnans 8
23 DEPENDENCIESutiittittetenieetenteeteetenteeeeestesstensenteestensesseemsensesseensessesnsessessesnsensesseens 8
24 CAVEATS AND ASSUMPTIONS .. .ceuttiuteterieeiteresieetenseetentesseetesseessenseseensesmeesensesseens 8
2.5 GUIDING PRINCIPLESc.tteutiteettentinieetesteeeteresueentenstensesbesueensesueemeensesueensesmesnsensesseens 9
2.6 CONFORMANCE ...t sttt ettt iasesesshes e eaeses sttt et s s s s s esesesesesesenenenas 9
3 JSON SCHEMA ARCHITECTUREcoeueeuerruinsurssincnissunsessanssesssesssssssssanssassssssns 11
3.1 BASIC ARCHITECTUREcuivuuiuininininitassteseeeesesssesesesesesesesesesenesesesesensnessssssssnsnsnes 11
3.1.1 JSON serialization in @ RESTful CONtextc..cccoveevvvevcieeaiieeeieeennnnn 11
3.1.2 Overall JSON Schema StrUCHUF@.c..ccceeieieiiaiieaieeeiieee e 11
3.2 VERSIONING AND "SID"iiiiiiniiiiieiiietiet ettt 12
33 GENERAL NAMING RULES MOVING FROM CCTS TOJSONccccoirviiiniinieniienne. 13
34 JSON SCHEMA LANDSCAPEcueeteiiriieteniintenienieetenieseeentesieeseeneesmeesesieeseensesaeenne 16
3.5 DATA TYPES ...t tteteteteneteuenenenentstststses et sesasssssesssesesesesesesesesesesesesesesensasnsnssssssnssses 17
3.5.1 Primitive DAEA TYDEScccoueeeeeiieiieeeiiiee ettt 17
3.5.2 Approved Core COMPONENt TYPESc.cceeveeeeeiieiiieeiieeiiee e 18
3.5.3 Unqualified DAt TYPEScccoovcuueeiiieeiiieeeiieeeee e 18
3.5.4 Qualified Data Types for Date and Time...................ccccceevvieviianiiniianieannn. 24
3.5.5 Other Qualified Dat@ TYPES...........cccoocueeieiaiieiieeiieseeee e 29
3.6 RESTRICTION AND EXTENSIONccotiiteiiniinieienieetenieseentesieeteneeseeetesieeseennesaeene 34
3.6.1 RESIFICHION ...ttt 34

Page 3 of 50

46
47

48
49

50

51
52
53

JSON Schema Naming and Design Rules V0.8 2022-03-30

3.0.2 EXIOISION ..o et 37
3.6.3 Publication and reusing contextualizationccccuevevveeiveesiveenennnns 37
3.7 ABIE AND BBIE REPRESENTATION IN JSON SCHEMAcooovvviviieeeeiiiiieeeeeeeeeenne 40

3.7.1 ASBIE representation in JSON Schema supporting document based and

resSouUrce-based MNfOrMALIONccc.cccueiiuiiiiieiieeeeee e 41

4 APPENDIX A: COMPLETE EXAMPLE.......ccccinniiiinnnniicsssnniesssssassssssassscssssassans 43
4.1 CERTIFICATE OF ORIGIN MODELc..ccoiiiiiiiiiiiereniieiere e 43
42 JSON SCHEMA SERIALIZATIONcueueueuririniaeseeeeeeeenestansessssessssssassesesssnssssssesesesens 43

5 APPENDIX B: NAMING AND DESIGN RULES LISTcccceeceversunsursunsanssessessesnes 44

6 APPENDIX C: GLOSSARY ..uciuiiiiisinsinsessessassassssssssssssssassssssssssssssssssssssssasssssssossoses 49

Page 4 of 50

54
55

56

57

58
59
60

61

JSON Schema Naming and Design Rules V0.8 2022-03-30
1.1 Document History
Phase Status Date Last Modified
Draft development First draft 17 Dec 2021
Draft development Draft 30 Mar 2022

1.2 Change Log

Table 1 — Document history

The change log is designed to alert users about significant changes that occurred during the

development of this document.

Date of Change | Version Paragraph Summary of Changes
Changed
24 Jan 2022 0.2 3 Adding rules for basic data types
25 Jan 2022 0.3 3
08 Feb 2022 0.4 3.6 Extensions, Restrictions, ABIEs, QDTs
17 Feb 2022 0.5 5 Adding rules list into appendix B
22 Feb 2022 0.5 32,34,35 JSON schema versioning
Date Time qDT
Identification Schemes part of DT
Note on quantity unit of Rec20+21
JSON schema structure
14 Mar 2022 0.6 33R13 Handling of hard spaces
3.54 Adjusted to modifications in next chapter
3.5.5 Modified code and identifier list export
3.6.1 Added example for lower layer
restriction
3.6.3 New R36, | New chapter about contextualisation
higher rules
renumbered
3.7R 37 Deprecated ABIEs
21 Mar 2022 0.7 R9 Handling of $id
R28 Placement of code list files
3.6.3 Explanation of Export methods
30 Mar 2022 0.8 R 12ff. Adding new R 12 to R 14 for the origin
of JSON schema names.
Table 8 Adjusted export options
R 39 New R 39 for UN/CEFACT publication

Page 5 of 50

Table 2 - Document change log

62

63
64
65

66

67
68
69

70

71

72
73
74
75

76

77
78
79
80

81

82

JSON Schema Naming and Design Rules V0.8 2022-03-30

1.3 JSON Schema Naming and Design Rules Project Team

We would like to recognize the following for their significant participation in the
development of this Unites Nations Centre for Trade Facilitation and Electronic Business
(UN/CEFACT) JSON Schema Naming and Design Rules technical specification.

ATG2 Chair
Marek Laskowski

Project Lead
Jorg Walther

Lead editors
Andreas Pelekies Gerhard Heemskerk

1.4 Acknowledgements

This version of UN/CEFACT JSON Schema Naming and Design Rules Technical
Specification has been created to foster convergence among Standards Development
Organizations (SDOs). It has been developed in close coordination with these organizations:

e TBD

1.5 Contact information

ATG2 — Marek Laskowski, Marek.laskowski@gmail.com
NDR Project Lead — Jorg Walther, jwalther@odette.org
Editor — Andreas Pelekies, Andreas@pelekies.de

Editor — Gerhard Heemskerk, Gerhard.heemskerk@kpnmail.nl

1.6 Notation

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
specification, are to be interpreted as described in Internet Engineering Task Force (IETF)
Request For Comments (RFC) 2119!,

Example A representation of a definition or a rule. Examples are informative.

[Note] Explanatory information. Notes are informative.

' Key words for use in RFCs to Indicate Requirement Levels - Internet Engineering Task Force, Request For
Comments 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt?number=2119

Page 6 of 50

mailto:Marek.laskowski@gmail.com
mailto:jwalther@odette.org
mailto:Andreas@pelekies.de
mailto:Gerhard.heemskerk@kpnmail.nl
http://www.ietf.org/rfc/rfc2119.txt?number=2119

83
84
85
86
87
88

&9

90
91
92

93
94

95

96

97

98
99

100
101

102
103

104
105
106

JSON Schema Naming and Design Rules V0.8 2022-03-30

Courier

<Lvar>>

Identification of a rule that requires conformance. Rules are normative. In
order to ensure continuity across versions of the specification, rule numbers
“n” are randomly generated. The number of a rule that is deleted will not be
re-issued. Rules that are added will be assigned a previously unused random
number.

The second number “c” after the pipe symbol m identifies the conformance

category of the given rule as defined in section 2.6 Conformance.

All words appearing in bolded courier font are values, objects or
keywords. Representation of non-printable characters like white-space are
surrounded by double-quotes, e.g. ["]

All placeholders are surrounded by double less-than and greater-than

characters. The meaning of the placeholder is described in the text.

1.7 Audience

The audience for this UN/CEFACT JSON Schema Naming and Design Rules Technical
Specification is:

e Members of the UN/CEFACT Applied Technologies Groups who are responsible for
development and maintenance of UN/CEFACT JSON Schema.

e The wider membership of the other UN/CEFACT Groups who participate in the
process of creating and maintaining UN/CEFACT JSON Schema definitions.

e Designers of tools who need to specify the conversion of user input into JSON Schema

definitions adhering to the rules defined in this document.

e Designers of JSON Schema definitions outside of the UN/CEFACT Forum
community. These include designers from other organizations that have found these

rules suitable for their own organizations.

Page 7 of 50

107

108

109
110
111

112
113
114
115
116
117
118

119

120
121

122

123
124
125

126

127
128
129
130

131
132
133

134
135
136

JSON Schema Naming and Design Rules V0.8 2022-03-30

2 Introduction

2.1 Objectives

This JSON Schema NDR technical specification document forms part of a suite of
documents that aim to support modern web developers to make use of UN/CEFACT

semantics.

It can be applied on any layer of the UN/CEFACT Reference Data Models to create
conformant JSON artefacts in accordance with the UN/CEFACT Core Components
Technical Specification Version 2.01. This includes comprehensive RDMs like Buy-Ship-
Pay, or Accounting as well as their contextualization like the Supply-Chain-Reference-
Data-Model (SCRDM), Multi-Modal-Transport-Reference-Data-Model (MMTRDM) down
to single message implementation like the Road Consignment Note (¢CMR) or the
certificate of origin (COO).

2.2 Requirements

Users of this specification should have an understanding of basic data modelling concepts,
basic business information exchange concepts and basic JSON concepts.

2.3 Dependencies

This document depends on
e UN/CEFACT Core Components Technical Specification Version 2.01.
e API TechSpec Open API design rules.

2.4 Caveats and Assumptions

Schemas created as a result of employing this specification should be made publicly
available as schema documents in a universally free and accessible and searchable library.
UN/CEFACT will make its contents freely available to any government, individual or

organization who wishes access.

Although this specification defines schema components as expressions of Reference Data
Models, non-CCTS developers can also use it for other logical data models and information
exchanges.

This specification does not address transformations via scripts or any other means. It does
not address any other representation of CCTS artefacts — such as XML, JSON-LD, OWL,
and XML

Page 8 of 50

137

138
139
140

141
142
143
144

145
146
147

148
149
150

151
152
153
154

155
156

157
158
159

160
161
162
163

164

165
166
167
168
169
170

JSON Schema Naming and Design Rules V0.8 2022-03-30

2.5 Guiding Principles

JSON Schema Creation
UN/CEFACT JSON Schema design rules will support JSON Schema creation
through handcrafting as well as automatic generation.

Tool Use and Support

The design of UN/CEFACT JSON Schema will not make any assumptions about
sophisticated tools for creation, management, storage, or presentation being
available.

Technical Specifications
UN/CEFACT JSON Schema Naming and Design Rules will be based on technical
specifications holding the equivalent of JSON Schema recommendation status.

JSON Schema Specification
UN/CEFACT JSON Schema Naming and Design Rules will be fully conformant
with the JSON Schema recommendation.

Interoperability

The number of ways to express the same information in a UN/CEFACT JSON
Schema and UN/CEFACT JSON instance document is to be kept as close to one as
possible.

Maintenance
The design of UN/CEFACT JSON Schema must facilitate maintenance.

Context Sensitivity
The design of UN/CEFACT JSON Schema must ensure that context-sensitive
document types are not precluded.

Ease of implementation

UN/CEFACT JSON Schema should be intuitive and reasonably clear in the context
for which they are designed. They should allow an intuitive implementation in
REST APIs, a.k.a. RESTful API, as well as other interchange appliances.

2.6 Conformance

Designers of JSON Schema in governments, private sector, and other standards

organizations external to the UN/CEFACT community have found this specification

suitable for adoption. To maximize reuse and interoperability across this wide user

community, the rules in this specification have been categorized to allow these other

organizations to create conformant JSON Schema while allowing for discretion or

extensibility in areas that have minimal impact on overall interoperability.

Page 9 of 50

171
172

173

174
175
176

177

178

179

JSON Schema Naming and Design Rules V0.8 2022-03-30

Accordingly, applications will be considered to be in full conformance with this technical
specification if they comply with the content of normative sections, rules and definitions.

[R 1]1]

Conformance SHALL be determined through adherence to the content of the normative
sections and rules. Furthermore, each rule is categorized to indicate the intended audience
for the rule by the following:

1 Rules which must not be violated. Else conformance and interoperability are
lost.
2 Rules which may be modified while still conformant to the NDR structure.

Table 3 - Conformance categories

Page 10 of 50

180

181

182
183
184
185
186
187
188
189

190

191
192
193
194
195

196
197
198
199

200

201
202
203
204
205
206

207
208
209
210

JSON Schema Naming and Design Rules V0.8 2022-03-30

3 JSON Schema Architecture

3.1 Basic architecture

The CCTS defines naming and design rules for a hierarchical data model that supports a
document centric modelling approach as well as a resource based modelling approach. In
order to support the document centric modelling approach and to be backwards compatible
it is designed in a hierarchy. REST APIs on the other hand are resource based only. This
means that when moving from CCTS to REST APIs using JSON Schema both options are
to be considered. In addition the JSON syntax has got its own naming and design rules that
differs from the naming and design rules from the CCTS. This section elaborates on how to
move from CCTS to JSON Schema.

3.1.1 JSON serialization in a RESTful context

In order to use the JSON schema artefacts in REST API specifications, the question arises at
which level a hierarchical structure is split into a resource-based structure. The
UN/CEFACT project API Town Plan has already dealt with this fundamental problem. It
formulated that the decision cannot be made centrally in advance. Rather, it depends on the
concrete implementation needs in the respective concrete project or the concrete domain.

For this reason, a form of serialization is chosen within the JSON Schema NDR that allows
both options for each decision point: The retention of the document-centric hierarchy and
the separation according to resources. All ASBIE? connections are affected by this. The
corresponding data type is modelled in the chapter ASBIE Serialization.

3.1.2 Overall JSON Schema Structure

[R2]1]

In the scope of this specification, a JSON schema is a file that complies to a JSON schema
definition as defined at https://json-schema.org. It may include subschemas defined in the
$defs section. A JSON schema fragment means both the overall JSON schema as well as
each of its included subschemas.

[R 3[1]

Each JSON schema SHALL be declared to be a “JSON Draft 2020-12 schema®” with the
appropriate $schema string property defined as https://json-
schema.org/draft/2020-12/schema.

2 Associated Business Information Entity

3 https://json-schema.org/specification-links.html

Page 11 of 50

211

212
213
214
215

216
217
218
219

220
221
222
223
224
225

226

227
228
229
230
231
232

233

234
235
236
237
238

239
240

241

242
243
244

245
246

247
248

JSON Schema Naming and Design Rules V0.8 2022-03-30

[R 4[1]

Each JSON schema SHALL contain a "title" annotation. It SHALL be an overall
description title.

[R 5[1]

Each JSON schema SHALL contain a "description" annotation. It contains an overall
description for that file as well as copyright information.

[R6]1]

Each declared Document and Library ABIE definitions and their BBIE* and ASBIE
members SHALL contain a "title" annotation and a "description" annotation. The
"title" annotation SHALL be the CCTS Dictionary Entry name for the BIE.
"description" annotation shall be the CCTS definition value. Members of enums
SHALL NOT contain the "title" or the "description" annotation.

[R 7]1]

The "unevaluatedProperties" property of each JSON schema fragment SHALL be
set to false, excluding subschemas for primitive data types, unqualified data types and
qualified data types. For subschemas specifying primitive data types, unqualified data types
or qualified data types the "unevaluatedProperties" property SHALL be stated as
defined in this document.

3.2 Versioning and "$id"

Fostering interoperable and highly automated data exchange means enabling machines to
process the information in the correct syntactical structure and the correct semantic
meaning. As requirements change on a regular base, the created standards need to adapt to
the new requirements. Therefore, it is necessary to define the given version of the technical

artefacts in a machine-readable way.

It is a clear goal to keep the JSON schema artefact structure as compatible as possible with
older and future versions.

[R 8[1]

The JSON schema file names SHALL NOT contain a version information. Differences in
versions are only indicated by $id and the folder structure in which the JSON schema
artefacts are located.

[R 9]

Each JSON schema being published by user groups or standardisation organisations
SHALL contain an identifier for the schema in the appropriate $id URI property. JSON

4 Basic Business Information Entity

Page 12 of 50

249
250

251
252

253
254

255
256
257
258
259
260
261
262

263
264

265
266
267

268
269
270

272
273
274

275
276

277

278
279

280

281
282

283
284

285
286
287
288
289

290

JSON Schema Naming and Design Rules V0.8 2022-03-30

schema exports that are only used in a closed environment (e.g. for testing) do NOT NEED
to contain the $id property.

The URI SHALL follow the following format:
"gid": "<basepath>/<version>/<BIE>"

with <basepath> identifying the originator. For UNECE artefacts that is
"https://service.unece.org/trade/uncefact/json-schema"

<version> in the UNECE publication format e.g. "p22a"
<BIE> with one
- distinct name for each message assembly ABIE® (e.g. Cross Industry
Invoice) without a file extension
- name for all BBIE components: "BasicComponents"
- distinct name for every RDM set of Library ABIE components:
e.g. "BSPRDMComponents" or "SCRDMComponents"
- distinct name for each extension collection
The JSON schema file name SHALL be build with the following format:
<originator>-<abbreviation>. json
with
- <originator> identifying the originator. For UNECE artefacts
it SHALL be UNECE.

- <abbreviation> identifying the RDM set of Library ABIE components
[Example]
"Sid": "https://service.unece.org/trade/uncefact/json-schema/D22A/
BasicComponents"
UNECE-BasicComponents.json

[R 10]1]

The BasicComponents JSON schema file SHALL contain all subschemas for primitive data
types, unqualified data types as well as qualified data types.

3.3 General naming rules moving from CCTS to JSON

The dictionary entry names follow specific naming rules defined in the CCTS containing
special characters like full stops |:| and white spaces E| that are not allowed in JSON for

naming entities.

The basic rules listed below apply when transferring CCTS names in JSON schema.

R 11]1]

A property is a name/value pair inside a JSON object. The property name is the key or name
part of the property. The property value is the value part of the property.

[Example]

{

"propertyName": "propertyValue"

}

5 Aggregated Business Information Entity

Page 13 of 50

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

306
307

308
309
310

311

312

313
314
315

316
317
318

319

320

JSON Schema Naming and Design Rules V0.8

2022-03-30

R 12/1]

JSON property names SHALL be derived from Dictionary Entry Names (DEN).

In e.g. in a BBIE or ASBIE the DEN contains the DEN of the surrounding ABIE, it SHALL
be removed. In case a BBIE or ASBIE contains consecutive identical words the duplication
SHALL be removed. If by applying the NDR rules words in the DEN are duplicated, the
duplication SHALL be removed.

R 131]

Any special characters such full stops |:|, non-breaking spaces (ASCII code 160) and
underscores D SHALL be removed from the underlying Dictionary Entry Name. If a digit
(0-9) was before and another digit after the white space, the white space SHALL be

replaced by a hyphen |-}
[Example]

"This. is_ a.

class. name" 18 represented as "thisIsAClassName"

"ISO 4217 3 A" isrepresented as "IS04217-3A"

[R 14/1]

JSON property names SHALL be lower camel-cased ASCII strings and JSON schema
compliant: The character after a white space shall be a capital letter. Capital letters in the

DEN SHALL NOT be kept.

[Example]

"Specified. IBAN. Identifier" isrepresented as "specifiedIbanId"

"AAA Archive Document. Specified. AAA Archive Archive Parameter" is

represented as "specifiedAaaArchiveParameter"

[R 15/1]

The abbreviations and acronyms SHALL be used as defined in Table 4.
[R 14|1] SHALL be taken into account.

CCTS Appearance JSON Representation
"Uniform Resource. "Uri"
Identifier" with
or "type": "string"
"URI "format": "uri"
Identification. The rule for abbreviating "Identifier" is not applied in this
I 3 f 3 " .
dentifier case. It SHALL NOT be abbreviated as "ur1d".
"Identification "Scheme"
Scheme"
"Details" "Type"
"Tdentifier" "Id"
"Indicator" SHALL be omitted. "isorHas" is added as a prefix.
"Identification. "Id"
Identifier"
"Text" SHALL be omitted

Table 4 — JSON Representation for abbreviations and acronyms

Page 14 of 50

321

322
323
324

325
326

JSON Schema Naming and Design Rules V0.8 2022-03-30

[R 16]1]

The Object Class Term "Identification Scheme" SHALL be represented as
"Scheme". [R 14|1] SHALL be taken into account.

Page 15 of 50

JSON Schema Naming and Design Rules V0.8 2022-03-30

327 3.4 JSON schema landscape

BasicComponents

« Unqualified Data Types Code Lists and Identification

¢ Qualified Data Types Lists
e OpenAPI Data Types \/—
J N T
AgriRDMComponents MMTRDM Components
BSPRDMComponents & SCRDMComponents
o ABIEs _J ¢ ABIEs
e BBIEs — e BBIEs

CrossIndustryInvoice ExtensionComponents
eCMR
e ABIEs
« ABIEs * QDTs

g L

329 Figure 1 — JSON schema structure

Page 16 of 50

330

331
332
333

334

335
336
337
338
339
340
341
342
343
344
345
346
347

348

349
350

351

352
353

354

JSON Schema Naming and Design Rules V0.8 2022-03-30

3.5 Data types

The CCTS defines a hierarchical relationship of basic data types. From primitive data types
(PDT), Approved Core Component Types (CCT) and finally unqualified data types (UDT)

are formed.®
3.5.1 Primitive Data Types

The decimal data type, which is used in particular to represent amounts (in a specific
currency), as well as measured values, requires special treatment. JSON does not support
such a decimal data type. It only supports the data type "number", which is technically
implemented as a float or double precision data type. There are many discussions’, but also
practical experiences (e.g. based on the application of validation rules from the
implementation of EN16931), which show the difficulties of using float data types instead
of a decimal data type. In summary, it can be stated that the use of a float data type
inevitably leads to rounding differences and imprecise representations of the transmitted
values. Since the implementation of the UNECE reference data models involves the
exchange of business data, precise transmission of values is the top priority. With this in
mind, the decimal data type is represented as a string representation in JSON schema. This
can be implemented cleanly and without loss in the various implementation languages, even
if direct arithmetic use is not possible at JSON level.

Examples for the implementation of the decimal type are:

Language Implementation

C# decimal

Go decimal

Java java.math.BigDecimal
JavaScript decimal.js

Python decimal.Decimal

Table 5 — Implementation of the decimal type in different languages

R 17]1]

Primitive data types (PDT) SHALL be represented in JSON schema, as stated in Table 6.
They SHALL be placed under $defs/pdt/.

¢ See CCTS Section 8.1

7 See e.g. https://github.com/zalando/jackson-datatype-money/blob/main/MONEY .md

Page 17 of 50

355

356

357
358

359

360
361
362
363
364
365
366
367
368

369
370

371
372
373
374

JSON Schema Naming and Design Rules V0.8 2022-03-30

CCTS
Primitive data type JSON Representation
Binary "binaryType":
{
"title": "Binary",
"description": "",
"type": "string",
"format": "byte"
}
Boolean "type": "boolean"
Decimal "decimalType":
{
"title": "Decimal",
"description": "",
"type": "string",
"pattern": "~ ([+=]12(02|[1-9]1[0-9]1*) (\\.2\\d+))s$"
}
Integer "type": "integer"
String "type": "string"

Table 6 — JSON representation of CCTS Primitive data types
3.5.2 Approved Core Component Types

The Approved Core Component Types have no direct representation in JSON schema.
Instead, UDTs are mapped directly into JSON schema.

3.5.3 Unqualified Data Types

UDTs form the basis for all further data structures of the CCTS. They consist of the actual
value (content), as well as usually optional supplementary components®. During
contextualisation, some of these supplementary components are often omitted. This in fact
multiplies the number of UDTs in the actual implementation and complicates it technically.
For this reason, contextualisation of UDTs is not mapped into JSON schema. Instead, the
complete UDTs in the higher data types are always used.

[R 18]1]

Unqualified data types SHALL be represented in subschemas. "Type" as part of the
Dictionary Entry Name SHALL be retained.

[R 19]1]

The CCTS content property SHALL be represented in a subschema with the name
"content". Its data type SHALL use the underlying PDT. The content-property SHALL
be required.

8 See CCTS section 8.1

Page 18 of 50

375

376
377
378
379

380

381
382
383

384

385
386
387
388
389
390

391

JSON Schema Naming and Design Rules V0.8 2022-03-30

[R 20[1]

Property names of supplementary components SHALL NOT repeat the JSON subschemas
property name.

[R 21[1]

Supplementary components may reference to code lists and/or identification schemes. In
this case the JSON property SHALL reference the appropriate code list or identification
scheme as defined in section 3.5.5 Other Qualified Data Types.

[R 22|1]

Unqualified data types SHALL be represented in subschemas as shown in Table 7. The
title and description properties are not shown in the following table. Instead they
are indicated with the placeholder <title and description> as those can change
over time. They SHALL be published in alignment with rules [R 4|1], [R 5|1], and [R 6]1].
They SHALL be placed under $defs/udt.

CCTS JSON Representation
Ungqualified data type
e Amount. Type " Al - |
o A t Content <<title and description>>
mount. conten "type": "object",
e Amount Currency. "properties": {
Identifier "content": {
e Amount Cunency. <<title and description>>
. . "S$Sref": "#/$defs/pdt/decimalType"
Code List Version. } ? ¥ < YP
. r
Identifier "currencyId": {
<<title and description>>
"$ref": "ISO_4217-
3A.json#/$defs/codelList/iso04217-3AType"
},
"currencyCodelListVersionId": {
<<title and description>>
"type": "string"
}
},
"required": ["content"],
"unevaluatedProperties": false
}
e Binary Object. Type "binaryObjectType": f{

<<title and description>>

¢ Binary Object. Content

. . "type": "Object",
¢ Binary Object. Format. "properties™: {
Text "content": {
° Blnary Object Mlme <<title and deSCriptiOl’l>>
Code "Sref": "#/$defs/pdt/binaryType"
. . b
e Binary Object. "format™: {
Encoding. Code <<title and description>>
e Binary Object. "type": "string"
Character Set. Code b
"mimeCode": {

Page 19 of 50

JSON Schema Naming and Design Rules V0.8

2022-03-30

<<title and description>>

¢ Binary Object. Uniform romms o S
Resource. Identifier) yper:s Tstring
e Binary Object. "encodingCode": {
Filename. Text <<title and description>>
"$ref":
"UNECE CharacterSetEncoding.json#/$defs/
codelList/characterSetEncodingType"
bo
"characterSetCode": {
<<title and description>>
"Sref": "UNECE CharacterSets.json#/Sdefs/
codeList/characterSetsType"
bo
"uri": {
<<title and description>>
"type": "string",
"format": "uri"
bo
"filename": ({
<<title and description>>
"type": "string"
}
bo
"required": ["content"] ,
"unevaluatedProperties": false
}
e Code. Type . {
"codeType":
¢ Code.(*nuent . <<title and description>>
e Code List. Identifier "type": "object",
e Code List. Agency. "properties": ({
Identifier "CEQE?E : {d d otions>
. itle an escription
e Code List. Agency "kype": "string"
Name. Text 1,
e (Code List. Name. Text "listId": {
e Code List. Version. <§;;Zle fgirfi;frlptlon»
Identifier | '
e Code. Name. Text "listAgencyId": ({
e Language. Identifier <§ti;le and description>>
. . "Sref": "UNECE UNTDID-
e (Code List. Uniform —

Resource. Identifier
Code List Scheme.
Uniform Resource.
Identifier

3055.json#/$defs/codelist/untdid3055Type"

}y
"listAgencyName": {
<<title and description>>

"type": "string"

b

"listName": {
<<title and description>>
"type": "string"

b
"listVersionId": {
<<title and description>>

"type": "String"
bo
"name": {
<<title and description>>
"type": "string"

Page 20 of 50

JSON Schema Naming and Design Rules V0.8 2022-03-30

by
"languageId": {
<<title and description>>
"$ref": "UNECE UNTDID-
3453.3son#/S$defs/codelList/untdid3453Type"
by
"listUri": {
<<title and description>>

"type": "string",
"format": "uri"
b
"listSchemaUri": {
<<title and description>>
"type": "string",
"format": "uri"
}
b
"required": ["content"]
"unevaluatedProperties": false

e Date Time. Type

"dateTimeType": {
<<title and description>>
"type": "string",
"format": "date-time"

e Date. Type

"graphicType": {
<<title and description>>
"Sref": "#/$defs/udt/binaryObjectType"

e Graphic. Type

"graphicType": {
<<title and description>>
"Sref": "#/$defs/udt/binaryObjectType"

e Identifier. Type

e Identifier. Content

e Identification Scheme.
Identifier

e Identification Scheme.
Name. Text

e Identification Scheme
Agency. Identifier

e Identification Scheme.
Agency Name. Text

e Identification Scheme.
Version. Identifier

e Identification Scheme

Data. Uniform Resource.

Identifier

e Identification = Scheme.
Uniform Resource.
Identifier

"identifierType": {
<<title and description>>
"type": "object",
"properties": {
"content": {
<<title and description>>
"type": "string"
b
"schemeId": {
<<title and description>>
"type": "string"
by
"schemeName": {
<<title and description>>
"type": "string"
b
"schemeAgencyId": {
<<title and description>>
"Sref": " UNECE _UNTDID-
3055. son#/Sdefs/codelList/untdid3055Type"
}o
"schemeAgencyName": {
<<title and description>>

Page 21 of 50

JSON Schema Naming and Design Rules V0.8

2022-03-30
"type": "String"
by
"schemeVersionId": {
<<title and description>>
"type": "String"
b
"schemeDataUri": {
<<title and description>>
"type": "string",
"format": "uri"
b
"schemeUri": ({
<<title and description>>
"type": "string",
"format": "uri"
}
b
"required": ["content"],

"unevaluatedProperties": false

e Indicator. Type

"indicatorType": {
<<title and description>>

"type": "boolean"
}
e Measure. Type "measureType": { "
<<title and description>>
e Measure. Content niype': "object"
e Measure Unit. Code "properties": {
e Measure Unit. Code "content": { -
List Version. Identifier <<UNEheodeul de STl 1on>>
"Sref": "#/$defs/pdt/decimalType"
b
"unitCode": {
<<title and description>>
"Sref": "UNECE UNTDID-
6411.json#/Sdefs/codelList/untdid6411Type"
b
"unitCodeListVersionId": {
<<title and description>>
"type": "String"
}
bo
"required": ["content"],
"unevaluatedProperties": false
}
e Name. Type "nameType": { o
e Text Content <<title and description>>
Lex' (M1ig 6 "Sref": "#/S$defs/udt/textType"
e Language. Identifier }
e Language. Locale.
Identifier
e Numeric. Type "numericType": {
e N ic. Content <<title and description>>
umerTc. onten "type": "object",
e Numeric. Format. Text "properties”: {

Page 22 of 50

JSON Schema Naming and Design Rules V0.8

2022-03-30
"content": {
<<title and description>>
"Sref": "#/$defs/pdt/decimalType"
b
"format": {
<<title and description>>
"type": "string"
}
b
"required": ["content"] ,

"unevaluatedProperties": false

}

"percentType": {

e Percent. Type
<<title and description>>
"Sref": "#/$defs/udt/numericType"
}
e Picture. Type "pictureType": {
<<title and description>>
"Sref": "#/Sdefs/udt/binaryObjectType"
}
e Quantity. Type "quantityType": {
. tity. Content <<title and description>>
Quan}y. onten neype: "object",
¢ Quantity Unit. Code "properties": {
¢ Quantity Unit. Code "contenth: B
List. Identifier <<title and description>>
. . "Sref": "#/$defs/pdt/decimalType"
¢ Quantity Unit. Code y,
List Agency. Identifier "unitCode": {
e Quantity Unit. Code <<title and description>>

List Agency Name.
Text

"$ref": "UNECE REC-
20+21 . son#/Sdefs/codelist/rec20+21Type"
}y
"unitCodeListId": {
<<title and description>>
"type": "string"
}y
"unitCodelListAgencyId": {
<<title and description>>
"$ref": "UNECE UNTDID-
3055.json#/$defs/codeList/untdid3055Type"
s
"unitCodeListAgencyName": {
<<title and description>>
"type": "string"
}
}y
"required": ["content"],
"unevaluatedProperties": false

[Note]

Rec 20 supports a combination with Rec 21 by adding a prefix to the
Rec 21 code values. In the usage of this JSON subschema, the combined
code list can be restricted as needed.

Page 23 of 50

392

393

394
395
396
397

JSON Schema Naming and Design Rules V0.8 2022-03-30

e Rate. Type "rateType": {
<<title and description>>
"Sref": "#/$defs/udt/numericType"
}
° Sound.Type "soundType": {
<<title and description>>
"Sref": "#/$defs/udt/binaryObjectType"
}
e Text. Type "textType": {
e Text Content <<title and description>>
cxt. Lonten . "type": "object",
e Language. Identifier "properties": ({
e Language. Locale. "content": {
Identifier <<title and description>>
"type": "String"

by
"languageId": {
<<title and description>>
"Sref": "ISO 6391-1-
2A.json#/Sdefs/codelist/1is06391-1-2AType"
by
"languageLocaleId": {
<<title and description>>

"type": "string"
}
}I
"required": ["content"],
"unevaluatedProperties": false
}
e Time. Type "timeType": {
<<title and description>>
"type": "string",
"format™: "time"
}
e Value. Type "valueType": {
<<title and description>>
"Sref": "#/$defs/udt/numericType"
}
e Video. Type "videoType": { o
<<title and description>>
"Sref": "#/$defs/udt/binaryObjectType"

}

Table 7 — JSON representation of Unqualified data types

3.5.4 Qualified Data Types for Date and Time

The CCTS supports the wide subset of the different date and time formats of ISO 8601.
However, this flexibility is only needed and used to a limited extent in practical
applications. Often, date, time and combined information can be reduced to their simple
representation form, which is directly supported by JSON schema. There exist a few

Page 24 of 50

398
399
400
401
402

403
404
405

406

407
408
409

410
411
412
413
414

415

416
417
418
419
420

422
423
424

426
427
428

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

JSON Schema Naming and Design Rules V0.8 2022-03-30

exceptions, so that in the CCTS some specialised QDTs have been defined. The modelling
of these QDTs goes back to the early EDIFACT definitions and no longer seems up-to-date
for application in OpenAPI using JSON schema. Nevertheless, this notation is still used in a
wide community. Against this background, the following simplification of these QDTs is
used:

[R 23|1]

The "Date Mandatory Date Time. Type" SHALL be replaced by the
formattedDateTimeType.

[R 24[1]

The "Time Only Formatted Date Time. Type" SHALL be replaced by the
formattedDateTimeType.

The implementation of the Formatted Date Time Type shall take into account the direct
mappability of certain date and time information directly into JSON schema. To allow an
intuitive implementation, the code list UNTDID 2379 is replaced by a JSON specific
variant for this purpose.

[R 25/1]

The "Formatted Date Time. Type" SHALL be represented as follows.
"formattedDateTimeType": {
<<title and description>>

"oneOf": [
{ "type": "string", "format": "date-time" },
{ "type": "string", "format": "time" },
{ "type": "string", "format": "date" },
{ "type": "string", "format": "duration" },
{

"type": "object",
"properties": {
"content": { "type": "string" },
"format": { "$ref": "UNECE UNTDID2379-
JSON. json#/$defs/codeList/untdid2379JsonType" }
}I
"required": ["content", "format"]
}
1

}
[Example]

JSON schema definition:

{ "properties": {
"myDateTime": { "Sref": "#/Sdefs/formattedDateTimeType"}
}

}

JSON instance:
Hint: The presence of "content" indicates that it is a UNECE specific format not directly supported by JSON
schema.

{
"myDateTime": {"content": "2022-W02", "format": "CCYY-Www"},
"myDateTime": {"content": "1T10:00/1T12:00", "format":

"NThh :mm/NThh:mm"},

Page 25 of 50

455

456
457
458
459
460

461
462
463
464
465
466
467

469
470
471

473
474
475
476
477
478
479
480
481
482

484
485
486
487
488
489
490
491
492
493
494
495
496
497

499
500
501
502
503
504
505
506
507

JSON Schema Naming and Design Rules V0.8 2022-03-30

"myDateTime": "2022-02-11",
"myDateTime": "2022-02-11T12:23:582",

"myDateTime": "12:23:58Z2",
"myDateTime": "P1OW"

}

[R 26|1]

Based on the code list "UNTDID 2379" an additional code list "UNTDID 2379 json"

SHALL be specified. All format definitions that are already represented in their meaning by
existing JSON date and time formats SHALL be omitted. This code list SHALL be
maintained in accordance with UNTDID 2379. All other formats SHALL be represented as
follows.
"untdid2379JsonType" : {
"title": "Date and Time format codes for JSON representation.",
"description": "This code list is based on UNTDID 2379. It is adjusted
to take JSON date and time representation into account.\n
The following abbreviations are used\n
'C' - Century\n

'Y' - Year\n
'M' - Month\n
'D' - Day\n
'h' - Hour\n
'm' - Minute\n
's' - Second\n
'w' - Week\n
'T' — Time zone offset separator (+/-/Z) \n
n
'A' - 10 day period within a month of a year\n
'B' - 1: First half month; 2: second half month\n
'E' - Week of a month\n

'G' - Working days\n
'H' - Half month\n
'I' - 1-9: Shift in a day\n

* % ok k% ok ok Ok F F F F F 7 ok X X F F * * * * I

'K' - 1-5: First to fifth week in a month\n
'M' - Trimester: A period of three months\n
'N' - 1-7: Numeric representation of the day (Monday = 1, Sunday = 7)\n
'P' — A period of 4 months\n
'Q' - Quarter\n
'RR' - 00-99: Time period\n
'S' - Semester\n
*\n

* Hyphens and additional character in a format string are kept. According
to ISO 8601 a slash is used to separate time spans.\n

Codes from UNTDID 2379 and their representation in JSON\n
* '2' - is represented as 'date' format\n

* '3' - is represented as 'date' format\n

* '4' - is represented as 'date' format\n

* '5' — is represented as 'date-time' format\n

* '6' — is represented as 'CCYY-MM-B'\n

* '7' - is represented as 'CCYY-MM-K'\n

* '8' — is represented as 'CCYY-MM-DD-I'\n

* '9' - is represented as 'CCYY-MM-DD-RR'\n

* '10' - is represented as 'date-time' format\n

* '101' - is represented as 'date' format\n

* '102' - is represented as 'date' format\n

* '103' - is represented as 'YY-Www-N'; 01 is first week of January; 1 is
always Monday\n

* '104' - is represented as 'MM-WEE/MM-WEE'\n

Page 26 of 50

508
509
510
511
512
513

515
516
517

519
520
521

523
524
525
526
527
528
529
530
531
532

534
535
536
537
538
539
540
541
542
543

545
546
547

549
550
551

553
554
555
556
557
558
559
560
561
562

564
565
566
567
568

JSON Schema Naming and Design Rules V0.8

of

as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as

as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as

* '105' - is represented as
start numbering the days
31st \n

* '106' - is represented
* '107' - is represented
* '108' - is represented
* '109' - is represented
* '110' - is represented
* '201' - is represented
* '202' - is represented
* '203' - is represented
* '204' - is represented
* '205' - is represented
* '206' - is represented
* '207' - is represented
* '208' - is represented
* '209' - is represented
* '210' - is represented
* '301' - is represented
* '302' - is represented
* '303' - is represented
* '304' - is represented
* '305' - is represented
* '306' - is represented
* '307' - is represented
* '308' - is represented
DDThh:mmZhh:mm' \n

* '401' - is represented
* '402' - is represented
* '404' - is represented
* '405' - is represented
* '406' - is represented
* '501' - is represented
* '502' - is represented
* '503' - is represented
* '600' - is represented
* '601' - is represented
* '602' - is represented
* '603' - is represented
* '604' - is represented
* '608' - is represented
* '609' - is represented
* '610' - is represented
* '613' - is represented
* '614' - is represented
* '615' - is represented
* '616' — is represented
* '701' - is represented
* '702' - is represented
* '703' - is represented
* '704' - is represented
* '705' - is represented
* '706' — is represented
* '707' - is represented
* '708' - is represented
* '709' - is represented
* '710' - is represented
* '713' - is represented
* '715' - is represented
* '716' - is represented
* '717' - is represented

2022-03-30

'YY-DDD'; January the first = Day 001; Always
the year from January lst through December

'-MM-DD' \n

'DDD' \n

'"WW'\n

'-MM-"'\n

'--DD'\n

'date-time' format\n
'date-time' format\n
'date-time' format\n
'date-time' format\n
'date-time' format\n
'date-time' format\n
'date-time' format\n
'date-time' format\n
'date-time' format\n

'hh:mm:ssZhh:mm/hh:mm:ssZhh:mm'\n

'date-time' format\n
'date-time' format\n
'date-time' format\n
'date-time' format\n

'-MM-DDThh:mm' format\n
'—-—-DDThh:mm' format\n
'date-time' format\n
'CCYY-MM-DDThh : mmZhh : mm/CCYY-MM-

format\n

'time' format\n

'time' format\n

'duration' format\n

'Zhh:mm'\n

'hh:mm/hh:mm' \n
'hh:mm:ss/hh:mm:ss' \n
'hh:mm:ssZhh:mm/hh:mm:ssZhh:mm' \n
'CC'\n

'YY' \n

'CCYY' \n

'YY-S' \n

'CCYY-S' \n

'CCYY-Q' \n

'YY-MM' \n
'CCYY-MM'
'YY-MM-A'
'YY-MM-A'
'YY-Www \n
'CCYY-Www' \n
'YY/YY' \n
'CCYY/CCYY' \n
'YY-S/YY-S' \n
'CCYY-S/CCYY-S'
'YY-P/YY-P' \n
'CCYY-P/CCYY-P'
'YY-Q/YY-Q' \n
'CCYY-Q/CCYY-Q' \n

'YY-MM/YY-MM' \n

'CCYY-MM/CCYY-MM' \n

'YY-MM-DDThh :mm/YY-MM-DDThh:mm' \n
'YY-Www/YY-Www' \n
'CCYY-Www/CCYY-Www' \n
'YY-MM-DD/YY-MM-DD' \n

'time'

\n
\n
\n

\n
\n

Page 27 of 50

JSON Schema Naming and Design Rules V0.8 2022-03-30

569 | * '718' - is represented as 'CCYY-MM-DD/CCYY-MM-DD' \n
570 | * '719' - is represented as 'CCYY-MM-DDThh:mm/CCYY-MM-DDThh:mm' \n
571 * '720' - is represented as 'NThh:mm/NThh:mm' \n
572 | * '801' - is represented as 'duration' format \n
573 | * '802' - is represented as 'duration' format \n
574 | * '803' - is represented as 'duration' format \n
575 | * '804' - is represented as 'duration' format \n
576 | * '805' - is represented as 'duration' format \n
577 | * '806' - is represented as 'duration' format \n
578 | * '807' - is represented as 'duration' format \n
579 | * '808' - is represented as 'S' \n

580 | * '809' - is represented as 'P' \n

581 * 1'810' - is represented as 'M' \n

582 | * '811' - is represented as 'H' \n

583 | * '812' - is represented as 'A' \n

584 | * '813' - is represented as 'N' \n

585 | * '814' - is represented as 'G' \n

586 | ",

587 "oneOf": [

588 { "const": "CCYY-MM-B" },

589 { "const": "CCYY-MM-K" },

590 { "const": "CCYY-MM-DD-I" },

591 { "const": "CCYY-MM-DD-RR" 1},

592 { "const": "YY-Www-N" },

593 { "const": "MMWEE/MMWEE" },

594 { "const": "YY-DDD" },

595 { "const": "-MM-DD" },

596 { "const": "DDD" },

597 { "const": "-WW" },

598 { "const": "-MM-" },

599 { "const": "--DD" 1},

600 { "const": "hh:mm:ssZhh:mm/hh:mm:ssZhh:mm" },
601 { "const": "-MM-DDThh:mm" },

602 { "const": "--DDThh:mm" },

603 { "const": "CCYY-MM-DDThh:mmZhh :mm/CCYY-MM-DDThh:mmZhh:mm" },
604 { "const": "Zhh:mm" },

605 { "const": "hh:mm/hhmm" },

606 { "const": "hh:mm:ss/hh:mm:ss" },

607 { "const": "hh:mm:ssZhh:mm/hh:mm:ssZhh:mm" },
608 { "const": "CC" },

609 { "const": "YY" },

610 { "const": "CCYY" 1},

611 { "const": "CCYY-S" },

612 { "const": "CCYY-Q" },

613 { "const": "YY-MM" },

614 { "const": "CCYY-MM" },

615 { "const": "YY-MM-A" },

616 { "const": "CCYY-MM-A" },

617 { "const": "YY-Www" },

618 { "const": "CCYY-Www" },

619 { "const": "YY/YY" },

620 { "const": "CCYY/CCYY" },

621 { "const": "YY-S/YY-S" },

622 { "const": "CCYY-S/CCYY-S" },

623 { "const": "YY-P/YY-P" },

624 { "const": "CCYY-P/CCYY-P" },

625 { "const": "YY-Q/YY-Q" },

626 { "const": "CCYY-Q/CCYY-Q" },

627 { "const": "YY-MM/YY-MM" },

628 { "const": "CCYY-MM/CCYY-MM" },

629 { "const": "YY-MM-DDThh:mm/YY-MM-DDThh:mm" },

Page 28 of 50

630
631
632
633
634
635
636
637
638
639

641
642
643
644

645

646
647
648
649

650
651

652
653
654

655
656
657
658
659
660
661
662
663
664
665

666

667
668
669
670
671
672
673

674

675
676

JSON Schema Naming and Design Rules V0.8 2022-03-30

"const": "YYWww/YYWww" },
"const": "CCYYWww/CCYYWww" },
"const": "YY-MM-DD/YY-MM-DD" },

"const": "CCYY-MM-DD/CCYY-MM-DD" 1},
"const": "CCYY-MM-DDThh:mm/CCYY-MM-DDThh:mm" },
"const": "NThh:mm/NThh:mm" },

L N e T e N R T T R e T e M)

"const" © "S" } ,
"const" : npn } ,
"const" : "M" } ,
"const" © "H" } ,
n const" © "A" } ,
"const" © "N" } ,
"const" : IIGII }

1
}

3.5.5 Other Qualified Data Types

In the CCTS code and identifier lists are specified as qualified data types (QDT). They base
on the UDT codeType or idType The UDT codeType and as before described idType
offers the ability to state code list or identification scheme specific properties like the
publishing agency or the used code list version or schema version.

Not in every code list and identification scheme or qualified data type all of these properties

are applicable, which is taken into account.

[R 27|1]

Each QDT that does not fall under section 3.5.4 SHALL be restricted according to its
definition applying the method described in section 3.6.1.

[Example]
"unitMeasureType": {

"title": "Unit Measure. Type",

"description": "A numeric value determined by measuring an object along
with the specified unit of measure.",

"Sref" : "#/S$defs/udt/measureType",

"required": ["unitCode"],

"properties": {

"unitCodelListVersionId": false

}

[R 28|1]

Each QDT SHALL be represented in a subschema. If code or id values are specified locally,
they SHALL be as a oneOf combination of const definitions. They SHALL NOT be
specified as enum arrays. Each code value SHALL be represented as a string type. If the
values of codes and ids are organised in code and identification schemes the corresponding
JSON schema SHALL refer to the appropriate code list or identification scheme.

[R 29]1]

Each code list and identification scheme SHALL be specified in a separate JSON schema
file.

Page 29 of 50

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

700
701
702
703

704

705
706
707
708
709
710
711
712
713
714
715
716
717
718

719
720
721
722
723

JSON Schema Naming and Design Rules V0.8 2022-03-30

A JSON schema file SHALL be created for each code list and identification scheme being
used. Its name SHALL represent the name of the code list or identification scheme and
SHALL be unique with the following form:

<Code List Agency Name> <Code List Name or Identifier>.json

<Identification Scheme Agency Name> <Identification Scheme
Name or Identifier>.json

Where:

e All special characters SHALL be removed from the name. A period D in the version
number is replaced by the letter p.

e <Code List Agency Name> — Agency that maintains the code list.

e <lIdentification Scheme Agency Name> — Agency that maintains the identification
scheme.

e <Code List Name or Identifier> — If a code list identifier exists in the UNTDID, the
identifier is given in the format UNTDID<identifier>. Else the code list name is
stated as assigned by the publishing agency.

e <Identification Scheme Name or Identifier> — If an identification scheme identifier
exists in the UNTDID, the identifier is given in the format UNTDID<identifier>.
Else the identification scheme name is stated as assigned by the publishing agency.

The file SHALL be placed in a subfolder codelists of the export path. The $id
property SHALL reflect this subfolder structure.

[Example]

UNECE_UNTDID-1001.json

OpenPEPPOL DocumentTypes.json

[R 30[2]

It is a clear goal to keep the JSON schema artefacts as compatible with code lists and
identification schemes as possible. For this reason the code list version and identification
scheme version is neither part of the .json filename nor part of the type name. But it is part
of the $id, so that JSON schema files can be used for differentiating versions if needed. If
for some reason more than one version of a code list or identification scheme needs to be
used in a specific scenario, the <Code List Version> or <Identification
Scheme Version> SHOULD be added to the file name in the following format:

<Code List Agency Name> <Code List Name or Identifier> <Code
List Version>. json

<Identification Scheme Agency Name> <Identification Scheme
Name or Identifier> <Identification Scheme Version>.json

Since the invention of JSON, there has been repeated discussion about whether JSON
should support comments in schema files. In terms of its basic concept, JSON is data-only
and it was deliberately decided not to support comments. Nevertheless, as versioning
progressed, annotations such as description and also $comment were introduced. The latter
is supposed to be ignored by parsers and should not be used to present information to

Page 30 of 50

724
725
726

727
728
729
730
731
732

733
734
735
736

737
738
739
740

741
742
743
744
745
746

747
748
749
750
751
752

753

754

755
756
757

JSON Schema Naming and Design Rules V0.8 2022-03-30

schema users. Instead $comment is only intended to contain information for future schema
developers e.g. to highlight schema maintenance information®. A much discussed topic for
years is the commenting of enums.

JSON Schema does not support comments in the .JSON file analogous to the double slash
in languages like C or the hashtag as in PHP. Some JSON editors support such comments
proprietarily. However, usually only one of the two variants, which often correspond to the
conventions of one's own programming language. Since there is consequently no universal
convention, the UNECE JSON Schema code and identifier lists dispense with such
proprietary comments.

This NDR technical specification is created with the goal of applicability of the JSON
schema artefacts for use in OpenAPI specifications. This means that for the implementer of
such a specification, the documentation of the individual code or identifier values is

important.

Starting with OpenAPI 3.1 the preferred representation of code lists is a oneOf
combination of const definitions. This allows code names and definitions to be added
directly to the definition of each individual code. In addition, further amendments like
adding validity periods for individual code values become possible.

R 31|1]

The description property of the JSON schema specifying a code or identifier list
SHALL list the copyright notice information as defined in the CCL. This includes the code
or identifier list name, code or identifier list agency, code or identifier list version, and
copyright information.

[R 32]2]

The title property of the subschema specifying the const definitions holding the values
of a code or identifier list SHOULD be the code name value in English language.

The description property of the subschema specifying the const definitions holding
the values of a code or identifier list SHOULD be the code definition value in English
language.

The following rule defines the representation of code and identifier lists as files.

[R 33|1]

Code lists SHALL be represented in a subschema of the corresponding schema file with the

following naming convention:
$defs/codelList/<Code List Name or Identifier>Type

® See https://json-schema.org/understanding-json-schema/reference/generic.html#comments

Page 31 of 50

758
759
760

761

762
763
764
765
766
767
768
769
770
771
772

774
775
776

778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810

811
812

813
814

JSON Schema Naming and Design Rules V0.8

with <Code List Name or Identifier> — If a code list identifier exists in the UNTDID, the
identifier is given in the format untdid<identifier>. Else the code list name is stated as
assigned by the publishing agency with special characters removed.

The following example shows a complete code list JSON schema file content.

[Example]
{
"Sschema": "https://json-schema.org/draft/2019-09/schema",
"$id": "https://service.unece.org/trade/uncefact/json-
SChema/DZZA/UNECEiUNTDID—3l3l",
"title": "Address type code",
"description": "<<copyright notice information>>",
"Sdefs": {

"codeList": {

"untdid3131Type": {

"title": "Address type code",
"oneOf": |

{

"const": "1",

"title": "Postal Address"

}y
{

"const":
"title":
}I
{

"const":
"title":

bo

{
"const":
"title":

bo

{
"const":
"title":

b

{

"const":
"title":
b
{
"const":
"title":
bo

"const":
"title":

ll2ll,
"Fiscal Address"

"3",
"Physical Address"

"4",
"Business Address"

ll5ll,
"Delivery To Address"

ll6ll,
"Residential Address"

ll7ll,
"Mail To Address"

"8",
"Postbox Address"

IR 34[1]

Identification schemes SHALL be represented in a subschema of the corresponding schema

file with the following naming convention:

Page 32 of 50

2022-03-30

815
816
817
818
819
820

821

822
823
824

826
827
828

830
831
832
833
834
835
836
837
838
839

841
842
843

845
846
847

849
850
851
852
853
854

856
857
858
859
860
861
862
863
864
865
866

867

JSON Schema Naming and Design Rules V0.8 2022-03-30

Sdefs/identificationScheme/<Indentification Scheme Name or
Identifier>Type

with < Identification Scheme Name or Identifier> — If an identification scheme identifier
exists in the UNTDID, the identifier is given in the format untdid<identifier>. Else the code
or identification scheme name is stated as assigned by the publishing agency with special
characters removed.

The following example shows a complete identification scheme JSON schema file content.

[Example]
{
"Sschema": "https://json-schema.org/draft/2019-09/schema",
"$id": "https://service.unece.org/trade/uncefact/json-
schema/D22A/ISO _639-1-2A",
"title": "Language identifier",
"description": "<<copyright notice information>>",
"Sdefs": {
"identificationScheme": ({
"is0639-1-2AType": {
"title": "Language identifier",
"oneOf": |
{
"const": "AR",
"title": "ARABIC"
b
{
"const": "AS",
"title": "ASSAMESE"
b
{
"const": "AV",
"title": "AVARIC"
}y
{
"const": "AY",
"title": "AYMARA"
}y
{
"const": "AZ",
"title": "AZERBAIJANI"
}y
{
"const": "BA,
"title": "BASHKIR"
b
"const": "BE",
"title": "BELARUSIAN"

Page 33 of 50

868

869

870
871
872
873
874
875
876

877
878

879
880
881

882

883
884

886
887
888
889
890
891
892
893

894

895
896
897
898
899
900
901
902
903
904
905
906
907
908

909
910
911
912

914
915
916

JSON Schema Naming and Design Rules V0.8 2022-03-30
3.6 Restriction and Extension

3.6.1 Restriction

The CCTS defines methods of restriction to create e.g. industry specific profiles of the
CCL. One output of this process are the Reference Data Models (RDMs) being published
like the Supply-Chain-Reference-Data Model (SCRDM) or the Multi-Modal-Transport-
Reference-Data-Model (MMT RDM). For data transmission via messages, this method is
also used to restrict cardinalities and values of code or identifier list. A significant part of
the standardisation activity of UN/CEFACT has been dealing with this very issue for many
years.

As defined in rule [R 9|1] for each individual layer of data models a separate JSON schema
file is published.

[R 35|1]

Restrictions to CCTS objects SHALL be represented in a subschema as follows:

Cardinalities

e FromO0..1to1..1

[Example]
"toBeRestrictedType": ({
"type": "object",
"properties": {
"id": { "type": "string" }

}

b

"restrictingType": {
"Sref": "#/Sdefs/toBeRestrictedType",
"required": ["id"]

}

e From 0..1 to 0..0 (forbidden)

[Example]
"toBeRestrictedType": ({
"type": "object",
"properties": {
"id": { "type": "Stril’lg" },
"name": { "type": "string" }
}
b
"restrictingType": {

"Sref": "#/Sdefs/toBeRestrictedType",
"properties": {
"id": false

}
}

e From 0..unbounded to 0..n with n < unbounded

[Example with n=2]
"toBeRestrictedType": {

"type" . "object" ,
"properties": {
"id": {
"type": "arrayll,
"items": { "type": "string }

Page 34 of 50

JSON Schema Naming and Design Rules V0.8 2022-03-30

917 }

918 }

919 ¥,

920 "restrictingType": {

921 "Sref": "#/$defs/toBeRestrictedType",

922 "properties": {

923 "id": { "maxItems": 2 }

924 }

925 |

926 | e From 0..unbounded to n..unbounded

927 [Example with n=2]

928 "toBeRestrictedType": {

929 "type": "object",

930 "properties": {

931 "idU: |

932 "type": "array",

933 "items": { "type": "string }

934 }

935 }

936 },

937 | "restrictingType": {

938 "Sref": "#/Sdefs/toBeRestrictedType",

939 "properties": {

940 "id": { "minItems": 2 }

941 }

942 |

943 | Restriction of value ranges

944 [Example restricting content to values with exact 2 fraction digits]
945 "restrictingType": {

946 "allof": |

947 { "Sref": "UNECE-BasicComponents.json#/$defs/udt/amountType" },
948 { "properties": {

949 "content": { "pattern": "~.*\..{2}$" }
950 }

951 }

952]

953 }

954 | Restriction of const

955 [Example restricting content to a code list subset]
956 | "addressType": {

957 "type": "object",

958 "properties": {

959 "countryId": { "Sref": "UNECE-

960 BasicComponents.json#/$defs/qgdt/countryIdType"}
961 }

962 },

963 "restrictingType": {

964 "allOf": |

965 { "Sref": " #/Sdefs/addressType" },

966 { "properties": ({

967 "countryId": { "const": ["CH", "DE", "FR"] }
968 }

969 }

970]

971 }

972 The same type of restriction can be applied if restrictions are defined on a lower level.
973

Page 35 of 50

974

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

1017

JSON Schema Naming and Design Rules V0.8

2022-03-30

[Example]

{
"Sdefs": {
"restriction": {
"allof": [
{
"Sref":
s
{
"properties": {
"oneFirst": {
"properties": {

"twoFirst": false

}y
"levelOne": {
"type": ’
"properties": {
"oneFirst": {
"Sref":
s
"oneSecond": {
"type":
}
}
}y
"levelTwo": {
"type": ’
"properties": {
"twoFirst": {
"type":
s

"twoSecond": {

"type" :

Figure 2: Example for second level restrictions

Page 36 of 50

1018

1019
1020
1021
1022
1023

1024
1025

1026

1027
1028
1029
1030
1031
1032

1033
1034
1035
1036

1037

1038
1039
1040
1041
1042
1043

1044
1045

1046
1047
1048

1049
1050

1051
1052
1053

JSON Schema Naming and Design Rules V0.8 2022-03-30

3.6.2 Extension

The CCTS does not support extensions. Therefore, no NDR rules analogous to the
Restrictions chapter can be set up for the CCTS that extend cardinalities, value ranges or
enum. Should an implementation nevertheless require such an extension, the result is no
longer compliant with the artefacts according to this technical specification. Technically,
this can be achieved by combining a schema with anyOf.

However, especially when implementing OpenAPI specifications, extensions to the
properties are needed. For example, to add metadata to the API endpoints.

[R 36|1]

The BasicComponents SHALL define a JSON subschema for extension as follows:
"Sdefs": {
"extensibleType": {
"patternProperties": { ""x-": true}
}
}

The extensibleType allows users to add their own JSON properties to the JSON
subschemas. The only rule they have to follow is that they must start with x-. This makes it
compliant to the extension method defined in the OpenAPI specification. An example can
be found in the next section in rule [R 41|1].

3.6.3 Publication and reusing contextualization

The CCL is undergoing a continuous development. This way it contains definitions that are
not used any more in newer versions. In order to prevent confusion with published data
types that are not used any more the RDM level is the lowest export level for any
UN/CEFACT publication.

[R 37|1]

The base of all JSON schema exports SHALL be the RDM level. This means that each
underlying CCL basic data type SHALL be profiled and contextualised according to the
RDM definition. Only data types that are used in an RDM SHALL be exported.

If the rules defined in this section are applied to the entire CCL, the resulting JSON
artefacts can become complex and very large. This approach creates a high level of
traceability of the restrictions and ensures a consistent (re-)use of the individual data types.

In a practical application of an API, however, these libraries can be unnecessarily large.
Especially if only a subset of the CCL is used.

Therefore, it can be useful to export "snapshots" of the required (sub-) structures as JSON
artefacts. The procedure here corresponds to the XML design principle "Venetian blind":
Only one JSON schema file is created, which contains all the required data types for the use

Page 37 of 50

1054
1055

1056

1057
1058
1059
1060

1061
1062

JSON Schema Naming and Design Rules V0.8 2022-03-30

case. All properties that are not required are not even exported. Restrictions are kept to a
minimum. Compliance with the CCL is mandatory.

[R 38]2]

A user community may decide to create "snapshot" JSON schema artefacts for a specific
subset of the CCL. A "snapshot" JSON schema artefact SHALL contain all relevant data
types that are needed to define the subset. The "snapshot" JSON schema artefact MAY
contain additional restrictions and extensions.

Together with the "snapshot" export there exist three possible ways of creating JSON
schema artefacts:

Export Description
variant

Library The library export creates one JSON schema file for each level of

export contextualisation as they are defined by the UN/CEFACT standards. It
creates one large CCL JSON schema representation as a foundation. On top
of it it creates one JSON schema file contextualising and restricting the
CCL to the defined RDMs and document-centric structures.

Pro

The complete CCL, all RDMs as well as all (document-centric) message
structure definitions are exported as defined by UN/CEFACT standards. A
maximum of re-usable data structures and definitions are created. It assures
by design that any implementation is consistent and ready for any process-
amendment.

Contra

Any implementation needs to handle the huge CCL library as a base import
as well as the multi-layer-restrictions as they are defined by UN/CEFACT
standards. For example the eCMR message is defined as a contextualisation
of a master message structure for all document-centric messages defined by
UN/CEFACT. The contained data structure is process specific
contextualisation of a multi modal transport reference data model. The
MMT-RDM is a transport specific contextualisation of the Buy-Ship-Pay
reference data model. And this again is a contextualisation of the
underlying CCL.

Thus an implementation could get rather complex while at the same time
achieving a maximum compliance level.

Subset The subset export follows the same principles as the library export with one
export major difference: Only the needed data structures of the selected subset are
exported. All other data structures are omitted. This way the file size and
content is reduced to a minimum set of information, while at the same time
keeping all relations available.

Pro
In addition to the arguments defined in the library export the subset export
is easier to handle in respect of file size and quantity of data objects.

Contra

Page 38 of 50

1063

1064
1065
1066
1067
1068
1069

1070

JSON Schema Naming and Design Rules V0.8 2022-03-30

The complexity of layers of contextualisation is still the same as with the
library export. Amendments of the subset lead to changes in the underlying
objects. Only those data objects are exported that are needed for a specific
subset. When the scope of the subset is widened in a future version, it may
need additional objects in the underlying data structures. This means that
implementations of the subset need to be updated at all players at the same
time.

Snapshot
export

Content wise the snapshot export is equal to the subset export. The main
difference is that the multi-layer-contextualisation over a set of several
JSON schema files is removed. Only one single JSON schema file is
created that contains all necessary data structures of the snapshot objects. It
is comparable with the XML "Ventian Blind" approach. Underlying data
objects are still defined (like a party data type). But they only contain
schema objects being used in the snapshot selection.

Pro

The complexity for the given snapshot is reduced to a minimum. Only one
single self-contained JSON schema file is created. The JSON schema file
can easily be used by all common JSON tools as well as OpenAPI design
tools. The exported data structures are compliant to the UN/CEFACT
standards and reflect "the compilation" of all restrictions and
contextualisation.

Contra

One self-contained JSON schema file is created for each individual
snapshot. If this approach is used in a pre-defined environment it works
quite well. Thus it is important to clearly define the snapshot content in
advance.

Things start to get complicated if in one implementation more than one self-
contained JSON schema files are used. Let's assume that for example one
self-contained JSON schema file is created for each document-centric
message (as it is done with XML schema files). Each of those JSON
schema files defined the underlying data types (e.g. party). In an OpenAPI
specification, it is not so easy to combine those multiple schema files into
one single OpenAPI file as it may come to conflicts between the underlying
data types. The reason is that the same data type with the same name may
have a diverging contextualisation between the different JSON schema
files.

Table 8: Export variants

[R 39/1]

A UNECE publication SHALL provide a library export on a server being able to handle the
necessary requirements for a global community accessing the published artefacts.

In addition, UNECE SHOULD provide an additional snapshot export for each
contextualised document ABIE.

[Note]

Page 39 of 50

1071
1072
1073

JSON Schema Naming and Design Rules V0.8 2022-03-30

As the $id property of a JSON schema must represent a valid URL aspects
of scalability of the provided service have to be taken into account. One

option could be to provide the publication in a GIT-compliant repository.

3.7 ABIE and BBIE representation in JSON Schema

[R 40]1]

Each ABIE SHALL be represented in a JSON subschema. ABIEs that are marked as
deprecated from a former version SHALL NOT be represented in a JSON subschema.

[Note]

For example an ABIE is defined to be deprecated starting in version D20B.
When the JSON schema artefacts for version D21A are exported, the ABIE
SHALL NOT be represented in this export.

[R 41]1]
All ABIE representations in JSON subschemas SHALL include a reference to the
extensibleType.
[Example]
"abieType": {
"title": "The Dictionary Entry Name",
"description": "The description",
"type": "object",
"properties": {
"pl": { "type": "string" }
b
"required": ["pl"],
"Sref": "UNECE-BasicComponents.json#/$defs/extensibleType",
"unevaluatedProperties": false

}
}
[Example of a valid JSON object]
{

"pl": "Value",
"x-addedStringProperty": "added value",
"x-addedObjectProperty": { "content": "al23"}

}
[Example of an invalid JSON object]

{

"pl": "Value",

"addedStringProperty": "added value"
}
[R 42]2]

Extension property names SHOULD follow the same naming conventions as defined in this
technical specification.

Page 40 of 50

JSON Schema Naming and Design Rules V0.8 2022-03-30

3.7.1 ASBIE representation in JSON Schema supporting document
based and resource-based information

The CCTS was invented for the purpose of standardising and modelling classic EDI
messages. Even today, document-based data exchange is still predominant, especially in the
B2B and B2A environment.

As described at the beginning of this technical specification, REST APIs are characterised
by the fact that they are not based on the exchange of business documents, but on the
management of resources. This means that, for example, business partner information can
be managed separately from transaction data such as an invoice or a transport order. In
CCTS, these are all the places where ABIEs are associated with each other in the form of
ASBIEs.

With the aim of supporting REST APIs via the JSON schema artefacts, it is precisely at this
point that the option of switching from document-centred to resource-centred data exchange
must be supported.

Resource-based data management means that resources must have unique identifiers.
Therefore, only those ABIEs can be converted to resources that have a unique identifier.
Using this unique identifier represented as an URI, the information about a buyer in an
order can be retrieved following the URI to the party information of the buyer.

[R 43]1]

The BasicComponents SHALL define a JSON subschema for resource based data exchange
as follows:

"Sdefs™: {
"resourceType": {
"type": "String",
"format": "uri"
}
}
[R 44(1]

All ASBIEs whose ABIEs contain an identifier SHALL be modelled using an oneOf
choice between the resourceType and the associated ABIE.
All other ASBIEs SHALL be referenced directly.
In both cases, the defined cardinality SHALL be observed.
To stay focused title, description etc. are not shown in the following example.
[Example]
"Sdefs":
"invoiceType": {
"type": "object",
"properties": {
"buyer": ({
"oneOf": |
{ "Sref": "UNECE-BasicComponents.json#/S$defs/resourceType" },

Page 41 of 50

JSON Schema Naming and Design Rules V0.8 2022-03-30

{ "Sref": "#/Sdefs/partyType" }
]
}
b
"required": ["buyer" 1,
"Sref": "UNECE-BasicComponents.json#/$defs/extensibleType",
"unevaluatedProperties": false

b
"partyType": {

"type": "object",
"properties": {
"id": {
"type": "array",
"items": {
"Sref": "UNECE-BasicComponents.json#/$defs/udt/identifierType"
}
b
"name": { "type": "string" },
"postalTradeAddress": { "Sref": "#/Sdefs/addressType" }
b
"Sref": "UNECE-BasicComponents.json#/$defs/extensibleType",
"unevaluatedProperties": false

b
"addressType": |

"type" . "object" ,

"properties": {
"street": { "type": "string"},
"city": { "type": "string"},
"postalCode": { "type": "string"},
"countryCode": { "Sref": "UNECE-

BasicComponents.json#/Sdefs/qgdt/countryIdType"}
b
"Sref": "UNECE-BasicComponents.json#/$defs/extensibleType",
"unevaluatedProperties": false
}
}

Page 42 of 50

1195

1196
1197

1198

1199

JSON Schema Naming and Design Rules V0.8 2022-03-30

4 Appendix A: Complete Example

This section provides an illustrative example of many of the constructs described in this
guidance document.

4.1 Certificate of Origin Model

4.2 JSON Schema serialization

Page 43 of 50

1200

JSON Schema Naming and Design Rules V0.8 2022-03-30

5 Appendix B: Naming and Design Rules List

Rule #

Rule

[R 1]1]

Conformance SHALL be determined through adherence to the content of the
normative sections and rules. Furthermore, each rule is categorized to indicate the
intended audience for the rule by the following:

1. Rules which must not be violated. Else conformance and interoperability is lost.
2. Rules which may be modified while still conformant to the NDR structure.

[R2|1]

In the scope of this specification, a JSON schema is a file that complies to a JSON
schema definition as defined at https://json-schema.org. It may include subschemas
defined in the $defs section. A JSON schema fragment means both the overall
JSON schema as well as each of its included subschemas.

[R3]1]

Each JSON schema SHALL be declared to be a “JSON Draft 2020-12 schema ” with
the appropriate $schema string property defined as https://json-
schema.org/draft/2020-12/schema.

[R 4]

Each JSON schema SHALL contain a "title" annotation. It SHALL be an overall
description title.

[R5]1]

Each JSON schema SHALL contain a "description" annotation. It contains an
overall description for that file as well as copyright information.

[R6]1]

Each declared Document and Library ABIE definitions and their BBIE and ASBIE
members SHALL contain a "title" annotation and a "description"
annotation. The "t it1e" annotation SHALL be the CCTS Dictionary Entry name for
the BIE. "description" annotation shall be the CCTS definition value. Members
of enums SHALL NOT contain the "title" or the "description" annotation.

[R7]1]

The "unevaluatedProperties" property of each JSON schema fragment
SHALL be set to false, excluding subschemas for primitive data types, unqualified
data types and qualified data types. For subschemas specifying primitive data types,
unqualified data types or qualified data types the "unevaluatedProperties"
property SHALL be stated as defined in this document.

[R 8]

The JSON schema file names SHALL NOT contain a version information. Differences
in versions are only indicated by Sid and the folder structure in which the JSON
schema artefacts are located.

[RII1]

Each JSON schema being published by user groups or standardisation organisations
SHALL contain an identifier for the schema in the appropriate Sid URI property.
JSON schema exports that are only used in a closed environment (e.g. for testing)
do NOT NEED to contain the Sid property. The URI SHALL follow the following
format:
"$id": "<basepath>/<version>/<BIE>"
with <basepath> identifying the originator. For UNECE artefacts that is
"https://service.unece.org/trade/uncefact/json-
schema"
<version> in the UNECE publication format e.g. "D22A"
<BIE> with one
- distinct name for each document ABIE without a file extension
- name for all BBIE components: "BasicComponents"
- distinct name for every RDM set of Library ABIE components
- distinct name for each extension collection
The JSON schema file name SHALL be build with the following format:
<originator>-<abbreviation>.json
with
<originator> identifying the originator. For UNECE artefacts

Page 44 of 50

JSON Schema Naming and Design Rules V0.8 2022-03-30

it SHALL be UNECE.
-<abbreviation> identifying the RDM set of Library ABIE components

[R 10/1]

The BasicComponents JSON schema file SHALL contain all subschemas for
primitive data types, unqualified data types as well as qualified data types.

[R 11]1]

A property is a name/value pair inside a JSON object. The property name is the key
or name part of the property. The property value is the value part of the property.

[R 121]

JSON property names SHALL be derived from Dictionary Entry Names (DEN).

In e.g. in a BBIE the DEN contains the DEN of the surrounding ABIE, it SHALL be
removed. If by applying the NDR rules words in the DEN are duplicated, the
duplication SHALL be removed.

[R 131]

Any special characters such full stops D and underscores D SHALL be removed
from the underlying Dictionary Entry Name. If a digit (0-9) was before and another
digit after the white space, the white space SHALL be replaced by a hyphen -.

[R 141]

JSON property names SHALL be lower camel-cased ASCII strings and JSON
schema compliant: The character after a white space shall be a capital letter. Capital
letters in the DEN SHALL NOT be kept.

[R 151]

The abbreviations and acronyms SHALL be used as defined in Table 4.
[R 14/1] SHALL be taken into account.

[R 16]1]

The Object Class Term "Identification Scheme" SHALL be represented as
"Scheme". [R 14|1] SHALL be taken into account.

[R 17/1]

Primitive data types (PDT) SHALL be represented in JSON schema, as stated in
Table 6. They SHALL be placed under $defs/pdt/.

[R 181]

Unqualified data types SHALL be represented in subschemas. "Type" as part of the
Dictionary Entry Name SHALL be retained.

[R 19/1]

The CCTS content property SHALL be represented in a subschema with the name
"content". Its data type SHALL use the underlying PDT. The content-property
SHALL be required.

[R 20]1]

Property names of supplementary components SHALL NOT repeat the JSON
subschemas property name.

[R 21]1]

Supplementary components may reference to code lists and/or identification
schemes. In this case the JSON property SHALL reference the appropriate code list
or identification scheme as defined in section 3.5.5 Other Qualified Data Types.

[R 22|1]

Unqualified data types SHALL be represented in subschemas as shown in Table 7.
The title and description properties are not shown in the following table.
Instead they are indicated with the placeholder <title and description> as
those can change over time. They SHALL be published in alignment with rules [R
4/1], [R 5|1], and [R 6]|1].

They SHALL be placed under $defs/udt.

[R 23|1]

The "Date Mandatory Date Time. Type" SHALL be replaced by the
formattedDateTimeType.

[R 24|1]

The "Time Only Formatted Date Time. Type" SHALL be replaced
by the formattedDateTimeType.

[R 25/1]

The "Formatted Date Time. Type" SHALL be represented as follows.
"formattedDateTimeType": {
<<title and description>>

"oneOf": [
{ "type": "string", "format": "date-time" },
{ "type": "string", "format": "time" },
{ "type": "string", "format": "date" },
{ "type": "string", "format": "duration" },
{ utypeu : "Object" ,
"properties": {

Page 45 of 50

JSON Schema Naming and Design Rules V0.8 2022-03-30

"content": { "type": "string" },
"format": { "$ref": "UNECE_UNTDID2379-
JSON. json#/$defs/codeList/untdid2379JsonType" }
}I
"required": ["content", "format"]
}
1
}

[R 26/1]

Based on the code list "UNTDID 2379" an additional code list "UNTDID 2379
json" SHALL be specified. All format definitions that are already represented in
their meaning by existing JSON date and time formats SHALL be omitted. This code
list SHALL be maintained in accordance with UNTDID 2379. It is represented in R
26.

[R 271]

Each QDT that does not fall under section 3.5.4 SHALL be restricted according to its
definition applying the method described in section 3.6.1.

[R 28|1]

Each QDT SHALL be represented in a subschema. If code or id values are specified
locally, they SHALL be as a oneOf combination of const definitions. They SHALL
NOT be specified as enum arrays. Each code value SHALL be represented as a
string type. If the values of codes and ids are organised in code and identification
schemes the corresponding JSON schema SHALL refer to the appropriate code list
or identification scheme.

[R 29]1]

Each code list and identification scheme SHALL be specified in a separate JSON
schema file.

A JSON schema file SHALL be created for each code list and identification scheme
being used. Its name SHALL represent the name of the code list or identification
scheme and SHALL be unique with the following form:

<Code List Agency Name> <Code List Name or
Identifier>. json

<Identification Scheme Agency Name> <Identification
Scheme Name or Identifier>.json

Where:

e All special characters SHALL be removed from the name. A period D in the
version number is replaced by the letter p.

e <Code List Agency Name> — Agency that maintains the code list.

e <Identification Scheme Agency Name> — Agency that maintains the
identification scheme.

e <Code List Name or Identifier> — If a code list identifier exists in the UNTDID,
the identifier is given in the format UNTDID<identifier>. Else the code list
name is stated as assigned by the publishing agency.

e <Identification Scheme Name or Identifier> — If an identification scheme
identifier exists in the UNTDID, the identifier is given in the format
UNTDID<identifier>. Else the identification scheme name is stated as
assigned by the publishing agency.

The file SHALL be placed in a subfolder codelists of the export path. The $id

property SHALL reflect this subfolder structure.

[R 302]

It is a clear goal to keep the JSON schema artefacts as compatible with code lists and
identification schemes as possible. For this reason the code list version and
identification scheme version is neither part of the .json filename nor part of the type
name. But it is part of the $id, so that JSON schema files can be used for
differentiating versions if needed. If for some reason more than one version of a code

Page 46 of 50

JSON Schema Naming and Design Rules V0.8 2022-03-30

list or identification scheme needs to be used in a specific scenario, the <Code
List Version> or <Identification Scheme Version> SHOULD be
added to the file name in the following format:

<Code List Agency Name> <Code List Name or
Identifier> <Code List Version>.Jjson

<Identification Scheme Agency Name> <Identification
Scheme Name or Identifier> <Identification Scheme
Version>. json

[R31]1]

The description property of the JSON schema specifying a code or identifier list
SHALL list the copyright notice information as defined in the CCL. This includes
the code or identifier list name, code or identifier list agency, code or identifier list
version, and copyright information.

[R 322]

The title property of the subschema specifying the const definitions holding the
values of a code or identifier list SHOULD be the code name value in English
language. The description property of the subschema specifying the const
definitions holding the values of a code or identifier list SHOULD be the code
definition value in English language.

[R 33|1]

Code lists SHALL be represented in a subschema of the corresponding schema file
with the following naming convention:

$defs/codelList/<Code List Name or Identifier>Type

with <Code List Name or Identifier> — If a code list identifier exists in the UNTDID,
the identifier is given in the format untdid<identifier>. Else the code list name is
stated as assigned by the publishing agency with special characters removed.

[R 34/1]

Identification schemes SHALL be represented in a subschema of the corresponding
schema file with the following naming convention:
$defs/identificationScheme/<Indentification Scheme Name
or Identifier>Type

with < Identification Scheme Name or Identifier> — If an identification scheme
identifier exists in the UNTDID, the identifier is given in the format
untdid<identifier>. Else the code or identification scheme name is stated as assigned
by the publishing agency with special characters removed.

[R 35/1]

Restrictions to CCTS objects SHALL be represented in a subschema as follows:
Cardinalities

e FromO0..1to1..1

e From0..1to 0..0 (forbidden)

e From 0..unbounded to 0..n with n < unbounded

e From 0..unbounded to n..unbounded

Restriction of value ranges

Restriction of enums

[R 36/1]

The BasicComponents SHALL define a JSON subschema for extension as follows:

"Sdefs": {
"extensibleType": {
"patternProperties": { "*x-": true}
}
}

[R 37/1]

The base of all JISON schema exports SHALL be the RDM level. This means that
each underlying CCL basic data type SHALL be profiled and contextualised
according to the RDM definition. Only data types that are used in an RDM SHALL
be exported.

Page 47 of 50

1201

JSON Schema Naming and Design Rules V0.8 2022-03-30

[R 382]

A user community may decide to create "snapshot" JSON schema artefacts for a
specific subset of the CCL. A "snapshot" JSON schema artefact SHALL contain all
relevant data types that are needed to define the subset. The "snapshot" JSON
schema artefact MAY contain additional restrictions and extensions.

[R 39/1]

A UNECE publication SHALL provide a library export on a server being able to
handle the necessary requirements for a global community accessing the published
artefacts.

In addition, UNECE SHOULD provide an additional snapshot export for each
contextualised document ABIE.

[R 40/1]

Each ABIE SHALL be represented in a JSON subschema. ABIEs that are marked as
deprecated from a former version SHALL NOT be represented in a JSON
subschema.

[R41]1]

All ABIE representations in JSON subschemas SHALL include a reference to the
extensibleType.

[R 42]2]

Extension property names SHOULD follow the same naming conventions as defined
in this technical specification.

[R 43|1]

The BasicComponents SHALL define a JSON subschema for resource based data
exchange as follows:
"Sdefs": {
"resourceType": {
"type": "string",
"format": "uri"
}
}

[R 44(1]

All ASBIEs whose ABIEs contain an identifier SHALL be modelled using an
oneOf choice between the resourceType and the associated ABIE.

All other ASBIEs SHALL be referenced directly.

In both cases, the defined cardinality SHALL be observed.

Page 48 of 50

1202

JSON Schema Naming and Design Rules V0.8 2022-03-30

6 Appendix C: Glossary

Term Definition

ASCII American Standard Code for Information Interchange

ABIE Aggregate Business Information Entity — a term from CCTS that
describes an information class such as “consignment”

API Application Programming Interface — a term that references a machine-
to-machine interface.

ASBIE Association Business Information Entity — a term from CCTS that
defines a directed relationship from source ABIE to target ABIE — eg
“consignee” as a relationship between “consignment” and “party”

B2A Business-to-Administration

B2B Business to Business

BBIE Basic Business Information Entity — a term from CCTS that describes
a property of a class such as party.name

BIE Business Information Entity

CCL Core Component Library

CCT Core Component Type

CCTS Core Component Technical Specification —a UN/CEFACT
specification document that described the information management
metamodel.

CDT Core Data Type. A value domain for a BBIE that is a simple type such
as “text” or “code”

DEN Dictionary Entry Name

EN16931 Semantic data model of the core elements of an electronic invoice (the
European Norm).

HATEOS Hypermedia as the Engine of Application State

IETF Internet Engineering Task Force

IRI Internationalised Resource Identifiers — a version of the [IETF URI
specification that support international character sets.

JSON JavaScript Object Notation — an IETF document syntax standard in
common use by web developers for APIs.

JSON-LD JSON-Linked Data — a JSON standard for linked data graphs /
semantic vocabularies.

NDR Naming & Design Rules — a set of rules for mapping one
representation (eg RDM) to another (eg JSON-LD)

OpenAPI An open source standard, language-agnostic interface to RESTful
APIs.

OWL Web Ontology Language

PDT Primitive data types

PHP Hypertext Preprocessor

QDT Qualified Data Type. A value domain for a BBIE that is a constrained
version of a CDT. Most often used with the “code” type — for example
“country code”

RDF Resource Description Framework —a W3C semantic web standard

RDEFS RDF Schema — an XML schema for RDF documents.

RDM Reference Data Model- a UN/CEFACT semantic output.

RESTful API See REST API

Page 49 of 50

1203

JSON Schema Naming and Design Rules V0.8 2022-03-30

Term Definition

REST API Representation State Transfer Application Programming Interface,
a.k.a. RESTful API

RFC Request for Comments

SDO Standards Development Organization

SHACL A W3C technical specification — the SHApes Constraint Language —
used to validate the structure of published semantic graphs
(vocabularies.)

UDT Unqualified data type

UNCEFACT United Nations Centre for Trade Facilitation and Electronic Business

UNECE United Nations Economic Commission for Europe

URI Uniform Resource Identifier — a namespace qualified string of
characters that unambiguously identify a resource. AURL is one type
of URL

URL Uniform Resource Locator — the web address of a resource.

UNTDID United Nations Trade Data Interchange Directory

XML Extensible Markup Language

XMI Xml Metadata Interchange - a well established OMG standard for

exchange of UML models between different tools.

Table 9 - Glossary

Page 50 of 50

	Abstract
	1.1 Document History
	1.2 Change Log
	1.3 JSON Schema Naming and Design Rules Project Team
	1.4 Acknowledgements
	1.5 Contact information
	1.6 Notation
	1.7 Audience
	2 Introduction
	2.1 Objectives
	2.2 Requirements
	2.3 Dependencies
	2.4 Caveats and Assumptions
	2.5 Guiding Principles
	2.6 Conformance

	3 JSON Schema Architecture
	3.1 Basic architecture
	3.1.1 JSON serialization in a RESTful context
	3.1.2 Overall JSON Schema Structure

	3.2 Versioning and "$id"
	3.3 General naming rules moving from CCTS to JSON
	3.4 JSON schema landscape
	3.5 Data types
	3.5.1 Primitive Data Types
	3.5.2 Approved Core Component Types
	3.5.3 Unqualified Data Types
	3.5.4 Qualified Data Types for Date and Time
	3.5.5 Other Qualified Data Types

	3.6 Restriction and Extension
	3.6.1 Restriction
	3.6.2 Extension
	3.6.3 Publication and reusing contextualization

	3.7 ABIE and BBIE representation in JSON Schema
	3.7.1 ASBIE representation in JSON Schema supporting document based and resource-based information

	4 Appendix A: Complete Example
	4.1 Certificate of Origin Model
	4.2 JSON Schema serialization

	5 Appendix B: Naming and Design Rules List
	6 Appendix C: Glossary

