
JSON Schema Naming and Design Rules V0.8 2022-03-30

Page 1 of 50

UN/CEFACT

UNITED NATIONS

Centre for Trade Facilitation and Electronic Business

(UN/CEFACT)

METHODOLOGY AND TECHNOLOGY PROGRAMME DEVELOPMENT AREA 1

SPECIFICATIONS DOMAIN 2

JSON SCHEMA NAMING AND DESIGN RULES 3

TECHNICAL SPECIFICATION 4

SOURCE: API TechSpec Project Team

ACTION: For public review

DATE: 30 March 2022

STATUS: Interim Draft v0.8

Disclaimer (Updated UN/CEFACT Intellectual Property Rights Policy – ECE/TRADE/C/CEFACT/ 2010/20/Rev.2)

ECE draws attention to the possibility that the practice or implementation of its outputs (which include but are not limited to
Recommendations, norms, standards, guidelines and technical specifications) may involve the use of a claimed intellectual property right.

Each output is based on the contributions of participants in the UN/CEFACT process, who have agreed to waive enforcement of their
intellectual property rights pursuant to the UN/CEFACT IPR Policy (document ECE/TRADE/C/CEFACT/2010/20/Rev.2 available at
http://www.unece.org/cefact/cf_docs.html or from the ECE secretariat). ECE takes no position concerning the evidence, validity or
applicability of any claimed intellectual property right or any other right that might be claimed by any third parties related to the
implementation of its outputs. ECE makes no representation that it has made any investigation or effort to evaluate any such rights.

Implementers of UN/CEFACT outputs are cautioned that any third-party intellectual property rights claims related to their use of a
UN/CEFACT output will be their responsibility and are urged to ensure that their use of UN/CEFACT outputs does not infringe on an
intellectual property right of a third party.

ECE does not accept any liability for any possible infringement of a claimed intellectual property right or any other right that might be5
claimed to relate to the implementation of any of its outputs. 6

国際連携2022-1-07 JSONメッセージ設計規則

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 2 of 50

Abstract 7

This JSON Schema Naming and Design Rules technical specification defines an 8
architecture and a set of rules necessary to define, describe and use JSON to consistently 9
express business information exchanges namely via APIs. It is based on the JSON Schema 10
team’s specification and the UN/CEFACT Core Components Technical Specification. This 11
specification will be used by UN/CEFACT to define JSON Schema and JSON Schema 12
documents which will be published as UN/CEFACT standards. It will also be used by other 13
organisations who are interested in maximizing inter- and intra-industry interoperability. 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32
33

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 3 of 50

 34

Abstract ... 2 35

1.1 DOCUMENT HISTORY .. 5

1.2 CHANGE LOG .. 5

1.3 JSON SCHEMA NAMING AND DESIGN RULES PROJECT TEAM 6

1.4 ACKNOWLEDGEMENTS ... 6

1.5 CONTACT INFORMATION... 6

1.6 NOTATION ... 6

1.7 AUDIENCE ... 7

2 INTRODUCTION... 8 36

2.1 OBJECTIVES .. 8

2.2 REQUIREMENTS .. 8

2.3 DEPENDENCIES ... 8

2.4 CAVEATS AND ASSUMPTIONS ... 8

2.5 GUIDING PRINCIPLES .. 9

2.6 CONFORMANCE ... 9

3 JSON SCHEMA ARCHITECTURE .. 11 37

3.1 BASIC ARCHITECTURE .. 11

3.1.1 JSON serialization in a RESTful context .. 11 38

3.1.2 Overall JSON Schema Structure ... 11 39

3.2 VERSIONING AND "$ID" .. 12

3.3 GENERAL NAMING RULES MOVING FROM CCTS TO JSON 13

3.4 JSON SCHEMA LANDSCAPE .. 16

3.5 DATA TYPES .. 17

3.5.1 Primitive Data Types .. 17 40

3.5.2 Approved Core Component Types .. 18 41

3.5.3 Unqualified Data Types .. 18 42

3.5.4 Qualified Data Types for Date and Time .. 24 43

3.5.5 Other Qualified Data Types .. 29 44

3.6 RESTRICTION AND EXTENSION ... 34

3.6.1 Restriction ... 34 45

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 4 of 50

3.6.2 Extension ... 37 46

3.6.3 Publication and reusing contextualization ... 37 47

3.7 ABIE AND BBIE REPRESENTATION IN JSON SCHEMA .. 40

3.7.1 ASBIE representation in JSON Schema supporting document based and 48
resource-based information .. 41 49

4 APPENDIX A: COMPLETE EXAMPLE .. 43 50

4.1 CERTIFICATE OF ORIGIN MODEL .. 43

4.2 JSON SCHEMA SERIALIZATION .. 43

5 APPENDIX B: NAMING AND DESIGN RULES LIST .. 44 51

6 APPENDIX C: GLOSSARY .. 49 52

 53

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 5 of 50

1.1 Document History 54

 55
Phase Status Date Last Modified
Draft development First draft 17 Dec 2021
Draft development Draft 30 Mar 2022

Table 1 – Document history 56

1.2 Change Log 57

The change log is designed to alert users about significant changes that occurred during the 58
development of this document. 59
 60

Date of Change Version Paragraph
Changed

Summary of Changes

24 Jan 2022 0.2 3 Adding rules for basic data types
25 Jan 2022 0.3 3
08 Feb 2022 0.4 3.6 Extensions, Restrictions, ABIEs, QDTs
17 Feb 2022 0.5 5 Adding rules list into appendix B
22 Feb 2022 0.5 3.2, 3.4, 3.5 JSON schema versioning

Date Time qDT
Identification Schemes part of qDT
Note on quantity unit of Rec20+21
JSON schema structure

14 Mar 2022 0.6 3.3 R 13
3.5.4
3.5.5
3.6.1

3.6.3 New R36,
higher rules
renumbered
3.7 R 37

Handling of hard spaces
Adjusted to modifications in next chapter
Modified code and identifier list export
Added example for lower layer
restriction
New chapter about contextualisation

Deprecated ABIEs

21 Mar 2022 0.7 R9
R28
3.6.3

Handling of $id
Placement of code list files
Explanation of Export methods

30 Mar 2022 0.8 R 12ff.

Table 8
R 39

Adding new R 12 to R 14 for the origin
of JSON schema names.
Adjusted export options
New R 39 for UN/CEFACT publication

Table 2 - Document change log 61

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 6 of 50

1.3 JSON Schema Naming and Design Rules Project Team 62

We would like to recognize the following for their significant participation in the 63
development of this Unites Nations Centre for Trade Facilitation and Electronic Business 64
(UN/CEFACT) JSON Schema Naming and Design Rules technical specification. 65

ATG2 Chair

Marek Laskowski

Project Lead

Jörg Walther

Lead editors
Andreas Pelekies Gerhard Heemskerk

1.4 Acknowledgements 66

This version of UN/CEFACT JSON Schema Naming and Design Rules Technical 67
Specification has been created to foster convergence among Standards Development 68
Organizations (SDOs). It has been developed in close coordination with these organizations: 69

• TBD 70

1.5 Contact information 71

ATG2 – Marek Laskowski, Marek.laskowski@gmail.com 72
NDR Project Lead – Jörg Walther, jwalther@odette.org 73
Editor – Andreas Pelekies, Andreas@pelekies.de 74
Editor – Gerhard Heemskerk, Gerhard.heemskerk@kpnmail.nl 75

1.6 Notation 76

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, 77
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this 78
specification, are to be interpreted as described in Internet Engineering Task Force (IETF) 79
Request For Comments (RFC) 21191. 80

Example A representation of a definition or a rule. Examples are informative. 81

 [Note] Explanatory information. Notes are informative. 82

1 Key words for use in RFCs to Indicate Requirement Levels - Internet Engineering Task Force, Request For
Comments 2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt?number=2119

mailto:Marek.laskowski@gmail.com
mailto:jwalther@odette.org
mailto:Andreas@pelekies.de
mailto:Gerhard.heemskerk@kpnmail.nl
http://www.ietf.org/rfc/rfc2119.txt?number=2119

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 7 of 50

 [R n|c] Identification of a rule that requires conformance. Rules are normative. In 83
order to ensure continuity across versions of the specification, rule numbers 84
“n” are randomly generated. The number of a rule that is deleted will not be 85
re-issued. Rules that are added will be assigned a previously unused random 86
number. 87
The second number “c” after the pipe symbol | identifies the conformance 88
category of the given rule as defined in section 2.6 Conformance. 89

Courier All words appearing in bolded courier font are values, objects or 90
keywords. Representation of non-printable characters like white-space are 91
surrounded by double-quotes, e.g. " ". 92

<<var>> All placeholders are surrounded by double less-than and greater-than 93
characters. The meaning of the placeholder is described in the text. 94

1.7 Audience 95

The audience for this UN/CEFACT JSON Schema Naming and Design Rules Technical 96
Specification is: 97

• Members of the UN/CEFACT Applied Technologies Groups who are responsible for 98
development and maintenance of UN/CEFACT JSON Schema. 99

• The wider membership of the other UN/CEFACT Groups who participate in the 100
process of creating and maintaining UN/CEFACT JSON Schema definitions. 101

• Designers of tools who need to specify the conversion of user input into JSON Schema 102
definitions adhering to the rules defined in this document. 103

• Designers of JSON Schema definitions outside of the UN/CEFACT Forum 104
community. These include designers from other organizations that have found these 105
rules suitable for their own organizations. 106

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 8 of 50

2 Introduction 107

2.1 Objectives 108

This JSON Schema NDR technical specification document forms part of a suite of 109
documents that aim to support modern web developers to make use of UN/CEFACT 110
semantics. 111

It can be applied on any layer of the UN/CEFACT Reference Data Models to create 112
conformant JSON artefacts in accordance with the UN/CEFACT Core Components 113
Technical Specification Version 2.01. This includes comprehensive RDMs like Buy-Ship-114
Pay, or Accounting as well as their contextualization like the Supply-Chain-Reference-115
Data-Model (SCRDM), Multi-Modal-Transport-Reference-Data-Model (MMTRDM) down 116
to single message implementation like the Road Consignment Note (eCMR) or the 117
certificate of origin (COO). 118

2.2 Requirements 119

Users of this specification should have an understanding of basic data modelling concepts, 120
basic business information exchange concepts and basic JSON concepts. 121

2.3 Dependencies 122

This document depends on 123
• UN/CEFACT Core Components Technical Specification Version 2.01. 124
• API TechSpec Open API design rules. 125

2.4 Caveats and Assumptions 126

Schemas created as a result of employing this specification should be made publicly 127
available as schema documents in a universally free and accessible and searchable library. 128
UN/CEFACT will make its contents freely available to any government, individual or 129
organization who wishes access. 130

Although this specification defines schema components as expressions of Reference Data 131
Models, non-CCTS developers can also use it for other logical data models and information 132
exchanges. 133

This specification does not address transformations via scripts or any other means. It does 134
not address any other representation of CCTS artefacts – such as XML, JSON-LD, OWL, 135
and XMI. 136

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 9 of 50

2.5 Guiding Principles 137

• JSON Schema Creation 138
UN/CEFACT JSON Schema design rules will support JSON Schema creation 139
through handcrafting as well as automatic generation. 140

• Tool Use and Support 141
The design of UN/CEFACT JSON Schema will not make any assumptions about 142
sophisticated tools for creation, management, storage, or presentation being 143
available. 144

• Technical Specifications 145
UN/CEFACT JSON Schema Naming and Design Rules will be based on technical 146
specifications holding the equivalent of JSON Schema recommendation status. 147

• JSON Schema Specification 148
UN/CEFACT JSON Schema Naming and Design Rules will be fully conformant 149
with the JSON Schema recommendation. 150

• Interoperability 151
The number of ways to express the same information in a UN/CEFACT JSON 152
Schema and UN/CEFACT JSON instance document is to be kept as close to one as 153
possible. 154

• Maintenance 155
The design of UN/CEFACT JSON Schema must facilitate maintenance. 156

• Context Sensitivity 157
The design of UN/CEFACT JSON Schema must ensure that context-sensitive 158
document types are not precluded. 159

• Ease of implementation 160
UN/CEFACT JSON Schema should be intuitive and reasonably clear in the context 161
for which they are designed. They should allow an intuitive implementation in 162
REST APIs, a.k.a. RESTful API, as well as other interchange appliances. 163

2.6 Conformance 164

Designers of JSON Schema in governments, private sector, and other standards 165
organizations external to the UN/CEFACT community have found this specification 166
suitable for adoption. To maximize reuse and interoperability across this wide user 167
community, the rules in this specification have been categorized to allow these other 168
organizations to create conformant JSON Schema while allowing for discretion or 169
extensibility in areas that have minimal impact on overall interoperability. 170

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 10 of 50

Accordingly, applications will be considered to be in full conformance with this technical 171
specification if they comply with the content of normative sections, rules and definitions. 172
[R 1|1] 173
Conformance SHALL be determined through adherence to the content of the normative 174
sections and rules. Furthermore, each rule is categorized to indicate the intended audience 175
for the rule by the following: 176
 177
Category Description

1 Rules which must not be violated. Else conformance and interoperability are
lost.

2 Rules which may be modified while still conformant to the NDR structure.
Table 3 - Conformance categories 178

 179

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 11 of 50

3 JSON Schema Architecture 180

3.1 Basic architecture 181

The CCTS defines naming and design rules for a hierarchical data model that supports a 182
document centric modelling approach as well as a resource based modelling approach. In 183
order to support the document centric modelling approach and to be backwards compatible 184
it is designed in a hierarchy. REST APIs on the other hand are resource based only. This 185
means that when moving from CCTS to REST APIs using JSON Schema both options are 186
to be considered. In addition the JSON syntax has got its own naming and design rules that 187
differs from the naming and design rules from the CCTS. This section elaborates on how to 188
move from CCTS to JSON Schema. 189

3.1.1 JSON serialization in a RESTful context 190

In order to use the JSON schema artefacts in REST API specifications, the question arises at 191
which level a hierarchical structure is split into a resource-based structure. The 192
UN/CEFACT project API Town Plan has already dealt with this fundamental problem. It 193
formulated that the decision cannot be made centrally in advance. Rather, it depends on the 194
concrete implementation needs in the respective concrete project or the concrete domain. 195

For this reason, a form of serialization is chosen within the JSON Schema NDR that allows 196
both options for each decision point: The retention of the document-centric hierarchy and 197
the separation according to resources. All ASBIE2 connections are affected by this. The 198
corresponding data type is modelled in the chapter ASBIE Serialization. 199

3.1.2 Overall JSON Schema Structure 200

[R 2|1] 201
In the scope of this specification, a JSON schema is a file that complies to a JSON schema 202
definition as defined at https://json-schema.org. It may include subschemas defined in the 203
$defs section. A JSON schema fragment means both the overall JSON schema as well as 204
each of its included subschemas. 205
 206
[R 3|1] 207
Each JSON schema SHALL be declared to be a “JSON Draft 2020-12 schema3” with the 208
appropriate $schema string property defined as https://json-209
schema.org/draft/2020-12/schema. 210

2 Associated Business Information Entity

3 https://json-schema.org/specification-links.html

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 12 of 50

 211
[R 4|1] 212
Each JSON schema SHALL contain a "title" annotation. It SHALL be an overall 213
description title. 214
 215
[R 5|1] 216
Each JSON schema SHALL contain a "description" annotation. It contains an overall 217
description for that file as well as copyright information. 218
 219
[R 6|1] 220
Each declared Document and Library ABIE definitions and their BBIE4 and ASBIE 221
members SHALL contain a "title" annotation and a "description" annotation. The 222
"title" annotation SHALL be the CCTS Dictionary Entry name for the BIE. 223
"description" annotation shall be the CCTS definition value. Members of enums 224
SHALL NOT contain the "title" or the "description" annotation. 225
 226
[R 7|1] 227
The "unevaluatedProperties" property of each JSON schema fragment SHALL be 228
set to false, excluding subschemas for primitive data types, unqualified data types and 229
qualified data types. For subschemas specifying primitive data types, unqualified data types 230
or qualified data types the "unevaluatedProperties" property SHALL be stated as 231
defined in this document. 232

3.2 Versioning and "$id" 233

Fostering interoperable and highly automated data exchange means enabling machines to 234
process the information in the correct syntactical structure and the correct semantic 235
meaning. As requirements change on a regular base, the created standards need to adapt to 236
the new requirements. Therefore, it is necessary to define the given version of the technical 237
artefacts in a machine-readable way. 238

It is a clear goal to keep the JSON schema artefact structure as compatible as possible with 239
older and future versions. 240
[R 8|1] 241
The JSON schema file names SHALL NOT contain a version information. Differences in 242
versions are only indicated by $id and the folder structure in which the JSON schema 243
artefacts are located. 244

 245
[R 9|1] 246
Each JSON schema being published by user groups or standardisation organisations 247
SHALL contain an identifier for the schema in the appropriate $id URI property. JSON 248

4 Basic Business Information Entity

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 13 of 50

schema exports that are only used in a closed environment (e.g. for testing) do NOT NEED 249
to contain the $id property. 250
The URI SHALL follow the following format: 251
"$id": "<basepath>/<version>/<BIE>" 252
with <basepath> identifying the originator. For UNECE artefacts that is 253
 "https://service.unece.org/trade/uncefact/json-schema" 254
 <version> in the UNECE publication format e.g. "D22A" 255
 <BIE> with one 256
 - distinct name for each message assembly ABIE5 (e.g. Cross Industry 257
 Invoice) without a file extension 258
 - name for all BBIE components: "BasicComponents" 259
 - distinct name for every RDM set of Library ABIE components: 260
 e.g. "BSPRDMComponents" or "SCRDMComponents" 261
 - distinct name for each extension collection 262
The JSON schema file name SHALL be build with the following format: 263
<originator>-<abbreviation>.json 264
with 265
 - <originator> identifying the originator. For UNECE artefacts 266
 it SHALL be UNECE. 267
 - <abbreviation> identifying the RDM set of Library ABIE components 268
[Example] 269
"$id": "https://service.unece.org/trade/uncefact/json-schema/D22A/ 270
 BasicComponents" 271
UNECE-BasicComponents.json 272
 273
[R 10|1] 274
The BasicComponents JSON schema file SHALL contain all subschemas for primitive data 275
types, unqualified data types as well as qualified data types. 276

3.3 General naming rules moving from CCTS to JSON 277

The dictionary entry names follow specific naming rules defined in the CCTS containing 278
special characters like full stops . and white spaces " " that are not allowed in JSON for 279
naming entities. 280

The basic rules listed below apply when transferring CCTS names in JSON schema. 281
 282
[R 11|1] 283
A property is a name/value pair inside a JSON object. The property name is the key or name 284
part of the property. The property value is the value part of the property. 285
[Example] 286
{ 287
 "propertyName": "propertyValue" 288
} 289
 290

5 Aggregated Business Information Entity

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 14 of 50

[R 12|1] 291
JSON property names SHALL be derived from Dictionary Entry Names (DEN). 292
In e.g. in a BBIE or ASBIE the DEN contains the DEN of the surrounding ABIE, it SHALL 293
be removed. In case a BBIE or ASBIE contains consecutive identical words the duplication 294
SHALL be removed. If by applying the NDR rules words in the DEN are duplicated, the 295
duplication SHALL be removed. 296
 297
 [R 13|1] 298
Any special characters such full stops ., non-breaking spaces (ASCII code 160) and 299
underscores _ SHALL be removed from the underlying Dictionary Entry Name. If a digit 300
(0-9) was before and another digit after the white space, the white space SHALL be 301
replaced by a hyphen -. 302
[Example] 303
"This. is_ a. class. name" is represented as "thisIsAClassName" 304
"ISO 4217 3 A" is represented as "ISO4217-3A" 305
 306
[R 14|1] 307
JSON property names SHALL be lower camel-cased ASCII strings and JSON schema 308
compliant: The character after a white space shall be a capital letter. Capital letters in the 309
DEN SHALL NOT be kept. 310

[Example] 311

"Specified. IBAN. Identifier" is represented as "specifiedIbanId" 312

"AAA Archive_ Document. Specified. AAA Archive_ Archive Parameter" is 313
represented as "specifiedAaaArchiveParameter" 314
 315
[R 15|1] 316
The abbreviations and acronyms SHALL be used as defined in Table 4. 317
[R 14|1] SHALL be taken into account. 318
 319
CCTS Appearance JSON Representation
"Uniform Resource.
Identifier"
or
"URI_
Identification.
Identifier"

"Uri"

with
"type": "string"
"format": "uri"
The rule for abbreviating "Identifier" is not applied in this
case. It SHALL NOT be abbreviated as "UrId".

"Identification
Scheme"

"Scheme"

"Details" "Type"
"Identifier" "Id"
"Indicator" SHALL be omitted. "isOrHas" is added as a prefix.
"Identification.
Identifier"

"Id"

"Text" SHALL be omitted
Table 4 – JSON Representation for abbreviations and acronyms 320

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 15 of 50

 321
[R 16|1] 322
The Object Class Term "Identification Scheme" SHALL be represented as 323
"Scheme". [R 14|1] SHALL be taken into account. 324

 325
 326

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 16 of 50

3.4 JSON schema landscape 327

 328
Figure 1 – JSON schema structure 329

ExtensionComponents
…

• ABIEs
• QDTs

MMTRDMComponents

AgriRDMComponents

BasicComponents

• Unqualified Data Types
• Qualified Data Types
• OpenAPI Data Types

Code Lists and Identification
Lists

CrossIndustryInvoice
eCMR

…

• ABIEs

BSPRDMComponents

• ABIEs
• BBIEs

SCRDMComponents

• ABIEs
• BBIEs

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 17 of 50

3.5 Data types 330

The CCTS defines a hierarchical relationship of basic data types. From primitive data types 331
(PDT), Approved Core Component Types (CCT) and finally unqualified data types (UDT) 332
are formed.6 333

3.5.1 Primitive Data Types 334

The decimal data type, which is used in particular to represent amounts (in a specific 335
currency), as well as measured values, requires special treatment. JSON does not support 336
such a decimal data type. It only supports the data type "number", which is technically 337
implemented as a float or double precision data type. There are many discussions7, but also 338
practical experiences (e.g. based on the application of validation rules from the 339
implementation of EN16931), which show the difficulties of using float data types instead 340
of a decimal data type. In summary, it can be stated that the use of a float data type 341
inevitably leads to rounding differences and imprecise representations of the transmitted 342
values. Since the implementation of the UNECE reference data models involves the 343
exchange of business data, precise transmission of values is the top priority. With this in 344
mind, the decimal data type is represented as a string representation in JSON schema. This 345
can be implemented cleanly and without loss in the various implementation languages, even 346
if direct arithmetic use is not possible at JSON level. 347

Examples for the implementation of the decimal type are: 348
Language Implementation
C# decimal
Go decimal
Java java.math.BigDecimal
JavaScript decimal.js
Python decimal.Decimal

Table 5 – Implementation of the decimal type in different languages 349
 350
[R 17|1] 351
Primitive data types (PDT) SHALL be represented in JSON schema, as stated in Table 6. 352
They SHALL be placed under $defs/pdt/. 353

 354

6 See CCTS Section 8.1

7 See e.g. https://github.com/zalando/jackson-datatype-money/blob/main/MONEY.md

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 18 of 50

CCTS
Primitive data type JSON Representation
Binary "binaryType":

{
 "title": "Binary",
 "description": "",
 "type": "string",
 "format": "byte"
}

Boolean "type": "boolean"

Decimal "decimalType":
{
 "title": "Decimal",
 "description": "",
 "type": "string",
 "pattern": "^([+-]?(0?|[1-9][0-9]*)(\\.?\\d+))$"
}

Integer "type": "integer"

String "type": "string"

Table 6 – JSON representation of CCTS Primitive data types 355

3.5.2 Approved Core Component Types 356

The Approved Core Component Types have no direct representation in JSON schema. 357
Instead, UDTs are mapped directly into JSON schema. 358

3.5.3 Unqualified Data Types 359

UDTs form the basis for all further data structures of the CCTS. They consist of the actual 360
value (content), as well as usually optional supplementary components8. During 361
contextualisation, some of these supplementary components are often omitted. This in fact 362
multiplies the number of UDTs in the actual implementation and complicates it technically. 363
For this reason, contextualisation of UDTs is not mapped into JSON schema. Instead, the 364
complete UDTs in the higher data types are always used. 365
 366
[R 18|1] 367
Unqualified data types SHALL be represented in subschemas. "Type" as part of the 368
Dictionary Entry Name SHALL be retained. 369
 370
[R 19|1] 371
The CCTS content property SHALL be represented in a subschema with the name 372
"content". Its data type SHALL use the underlying PDT. The content-property SHALL 373
be required. 374

8 See CCTS section 8.1

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 19 of 50

 375
[R 20|1] 376
Property names of supplementary components SHALL NOT repeat the JSON subschemas 377
property name. 378
 379
[R 21|1] 380
Supplementary components may reference to code lists and/or identification schemes. In 381
this case the JSON property SHALL reference the appropriate code list or identification 382
scheme as defined in section 3.5.5 Other Qualified Data Types. 383
 384
 [R 22|1] 385
Unqualified data types SHALL be represented in subschemas as shown in Table 7. The 386
title and description properties are not shown in the following table. Instead they 387
are indicated with the placeholder <title and description> as those can change 388
over time. They SHALL be published in alignment with rules [R 4|1], [R 5|1], and [R 6|1]. 389
They SHALL be placed under $defs/udt. 390
 391
CCTS
Unqualified data type

JSON Representation

• Amount. Type
• Amount. Content
• Amount Currency.

Identifier
• Amount Currency.

Code List Version.
Identifier

"amountType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "$ref": "#/$defs/pdt/decimalType"
 },
 "currencyId": {
 <<title and description>>
 "$ref": "ISO_4217-
3A.json#/$defs/codeList/iso4217-3AType"
 },
 "currencyCodeListVersionId": {
 <<title and description>>
 "type": "string"
 }
 },
 "required": ["content"],
 "unevaluatedProperties": false
}

• Binary Object. Type
• Binary Object. Content
• Binary Object. Format.

Text
• Binary Object. Mime.

Code
• Binary Object.

Encoding. Code
• Binary Object.

Character Set. Code

"binaryObjectType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "$ref": "#/$defs/pdt/binaryType"
 },
 "format": {
 <<title and description>>
 "type": "string"
 },
 "mimeCode": {

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 20 of 50

• Binary Object. Uniform
Resource. Identifier

• Binary Object.
Filename. Text

 <<title and description>>
 "type": "string"
 },
 "encodingCode": {
 <<title and description>>
 "$ref":
"UNECE_CharacterSetEncoding.json#/$defs/
codeList/characterSetEncodingType"
 },
 "characterSetCode": {
 <<title and description>>
 "$ref": "UNECE_CharacterSets.json#/$defs/
codeList/characterSetsType"
 },
 "uri": {
 <<title and description>>
 "type": "string",
 "format": "uri"
 },
 "filename": {
 <<title and description>>
 "type": "string"
 }
 },
 "required": ["content"] ,
 "unevaluatedProperties": false
}

• Code. Type
• Code. Content
• Code List. Identifier
• Code List. Agency.

Identifier
• Code List. Agency

Name. Text
• Code List. Name. Text
• Code List. Version.

Identifier
• Code. Name. Text
• Language. Identifier
• Code List. Uniform

Resource. Identifier
Code List Scheme.
Uniform Resource.
Identifier

"codeType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "type": "string"
 },
 "listId": {
 <<title and description>>
 "type": "string"
 },
 "listAgencyId": {
 <<title and description>>
 "$ref": "UNECE_UNTDID-
3055.json#/$defs/codeList/untdid3055Type"
 },
 "listAgencyName": {
 <<title and description>>
 "type": "string"
 },
 "listName": {
 <<title and description>>
 "type": "string"
 },
 "listVersionId": {
 <<title and description>>
 "type": "string"
 },
 "name": {
 <<title and description>>
 "type": "string"

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 21 of 50

 },
 "languageId": {
 <<title and description>>
 "$ref": "UNECE_UNTDID-
3453.json#/$defs/codeList/untdid3453Type"
 },
 "listUri": {
 <<title and description>>
 "type": "string",
 "format": "uri"
 },
 "listSchemaUri": {
 <<title and description>>
 "type": "string",
 "format": "uri"
 }
 },
 "required": ["content"] ,
 "unevaluatedProperties": false
}

• Date Time. Type "dateTimeType": {

 <<title and description>>
 "type": "string",
 "format": "date-time"
}

• Date. Type "graphicType": {

 <<title and description>>
 "$ref": "#/$defs/udt/binaryObjectType"
}

• Graphic. Type "graphicType": {
 <<title and description>>
 "$ref": "#/$defs/udt/binaryObjectType"
}

• Identifier. Type
• Identifier. Content
• Identification Scheme.

Identifier
• Identification Scheme.

Name. Text
• Identification Scheme

Agency. Identifier
• Identification Scheme.

Agency Name. Text
• Identification Scheme.

Version. Identifier
• Identification Scheme

Data. Uniform Resource.
Identifier

• Identification Scheme.
Uniform Resource.
Identifier

"identifierType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "type": "string"
 },
 "schemeId": {
 <<title and description>>
 "type": "string"
 },
 "schemeName": {
 <<title and description>>
 "type": "string"
 },
 "schemeAgencyId": {
 <<title and description>>
 "$ref": "UNECE_UNTDID-
3055.json#/$defs/codeList/untdid3055Type"
 },
 "schemeAgencyName": {
 <<title and description>>

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 22 of 50

 "type": "string"
 },
 "schemeVersionId": {
 <<title and description>>
 "type": "string"
 },
 "schemeDataUri": {
 <<title and description>>
 "type": "string",
 "format": "uri"
 },
 "schemeUri": {
 <<title and description>>
 "type": "string",
 "format": "uri"
 }
 },
 "required": ["content"],
 "unevaluatedProperties": false
}

• Indicator. Type "indicatorType": {

 <<title and description>>
 "type": "boolean"
}

• Measure. Type
• Measure. Content
• Measure Unit. Code
• Measure Unit. Code

List Version. Identifier

"measureType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "$ref": "#/$defs/pdt/decimalType"
 },
 "unitCode": {
 <<title and description>>
 "$ref": "UNECE_UNTDID-
6411.json#/$defs/codeList/untdid6411Type"
 },
 "unitCodeListVersionId": {
 <<title and description>>
 "type": "string"
 }
 },
 "required": ["content"],
 "unevaluatedProperties": false
}

• Name. Type
• Text. Content
• Language. Identifier
• Language. Locale.

Identifier

"nameType": {
 <<title and description>>
 "$ref": "#/$defs/udt/textType"
}

• Numeric. Type
• Numeric. Content
• Numeric. Format. Text

"numericType": {
 <<title and description>>
 "type": "object",
 "properties": {

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 23 of 50

 "content": {
 <<title and description>>
 "$ref": "#/$defs/pdt/decimalType"
 },
 "format": {
 <<title and description>>
 "type": "string"
 }
 },
 "required": ["content"] ,
 "unevaluatedProperties": false
}

• Percent. Type "percentType": {

 <<title and description>>
 "$ref": "#/$defs/udt/numericType"
}

• Picture. Type "pictureType": {

 <<title and description>>
 "$ref": "#/$defs/udt/binaryObjectType"
}

• Quantity. Type
• Quantity. Content
• Quantity Unit. Code
• Quantity Unit. Code

List. Identifier
• Quantity Unit. Code

List Agency. Identifier
• Quantity Unit. Code

List Agency Name.
Text

"quantityType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "$ref": "#/$defs/pdt/decimalType"
 },
 "unitCode": {
 <<title and description>>
 "$ref": "UNECE_REC-
20+21.json#/$defs/codeList/rec20+21Type"
 },
 "unitCodeListId": {
 <<title and description>>
 "type": "string"
 },
 "unitCodeListAgencyId": {
 <<title and description>>
 "$ref": "UNECE_UNTDID-
3055.json#/$defs/codeList/untdid3055Type"
 },
 "unitCodeListAgencyName": {
 <<title and description>>
 "type": "string"
 }
 },
 "required": ["content"],
 "unevaluatedProperties": false
}

[Note]

Rec 20 supports a combination with Rec 21 by adding a prefix to the
Rec 21 code values. In the usage of this JSON subschema, the combined
code list can be restricted as needed.

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 24 of 50

• Rate. Type "rateType": {

 <<title and description>>
 "$ref": "#/$defs/udt/numericType"
}

• Sound. Type "soundType": {

 <<title and description>>
 "$ref": "#/$defs/udt/binaryObjectType"
}

• Text. Type
• Text. Content
• Language. Identifier
• Language. Locale.

Identifier

"textType": {
 <<title and description>>
 "type": "object",
 "properties": {
 "content": {
 <<title and description>>
 "type": "string"
 },
 "languageId": {
 <<title and description>>
 "$ref": "ISO_6391-1-
2A.json#/$defs/codeList/iso6391-1-2AType"
 },
 "languageLocaleId": {
 <<title and description>>
 "type": "string"
 }
 },
 "required": ["content"],
 "unevaluatedProperties": false
}

• Time. Type "timeType": {

 <<title and description>>
 "type": "string",
 "format": "time"
}

• Value. Type "valueType": {

 <<title and description>>
 "$ref": "#/$defs/udt/numericType"
}

• Video. Type "videoType": {

 <<title and description>>
 "$ref": "#/$defs/udt/binaryObjectType"
}

Table 7 – JSON representation of Unqualified data types 392

3.5.4 Qualified Data Types for Date and Time 393

The CCTS supports the wide subset of the different date and time formats of ISO 8601. 394
However, this flexibility is only needed and used to a limited extent in practical 395
applications. Often, date, time and combined information can be reduced to their simple 396
representation form, which is directly supported by JSON schema. There exist a few 397

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 25 of 50

exceptions, so that in the CCTS some specialised QDTs have been defined. The modelling 398
of these QDTs goes back to the early EDIFACT definitions and no longer seems up-to-date 399
for application in OpenAPI using JSON schema. Nevertheless, this notation is still used in a 400
wide community. Against this background, the following simplification of these QDTs is 401
used: 402
 [R 23|1] 403
The "Date Mandatory_ Date Time. Type" SHALL be replaced by the 404
formattedDateTimeType. 405
 406
[R 24|1] 407
The "Time Only_ Formatted_ Date Time. Type" SHALL be replaced by the 408
formattedDateTimeType. 409
 410
The implementation of the Formatted Date Time Type shall take into account the direct 411
mappability of certain date and time information directly into JSON schema. To allow an 412
intuitive implementation, the code list UNTDID 2379 is replaced by a JSON specific 413
variant for this purpose. 414
[R 25|1] 415
The "Formatted_ Date Time. Type" SHALL be represented as follows. 416
"formattedDateTimeType": { 417
 <<title and description>> 418
 "oneOf": [419
 { "type": "string", "format": "date-time" }, 420
 { "type": "string", "format": "time" }, 421
 { "type": "string", "format": "date" }, 422
 { "type": "string", "format": "duration" }, 423
 { "type": "object", 424
 "properties": { 425
 "content": { "type": "string" }, 426
 "format": { "$ref": "UNECE_UNTDID2379-427
JSON.json#/$defs/codeList/untdid2379JsonType" } 428
 }, 429
 "required": ["content", "format"] 430
 } 431
] 432
} 433
[Example] 434
 435
JSON schema definition: 436
{ "properties": { 437
 "myDateTime": { "$ref": "#/$defs/formattedDateTimeType"} 438
 } 439
} 440
 441
JSON instance: 442
Hint: The presence of "content" indicates that it is a UNECE specific format not directly supported by JSON 443
schema. 444
 445
{ 446
 "myDateTime": {"content": "2022-W02", "format": "CCYY-Www"}, 447
 "myDateTime": {"content": "1T10:00/1T12:00", "format": 448
"NThh:mm/NThh:mm"}, 449

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 26 of 50

 "myDateTime": "2022-02-11", 450
 "myDateTime": "2022-02-11T12:23:58Z", 451
 "myDateTime": "12:23:58Z", 452
 "myDateTime": "P10W" 453
} 454

 455
[R 26|1] 456
Based on the code list "UNTDID 2379" an additional code list "UNTDID 2379 json" 457
SHALL be specified. All format definitions that are already represented in their meaning by 458
existing JSON date and time formats SHALL be omitted. This code list SHALL be 459
maintained in accordance with UNTDID 2379. All other formats SHALL be represented as 460
follows. 461
"untdid2379JsonType": { 462
 "title": "Date and Time format codes for JSON representation.", 463
 "description": "This code list is based on UNTDID 2379. It is adjusted 464
to take JSON date and time representation into account.\n 465
The following abbreviations are used\n 466
* 'C' – Century\n 467
* 'Y' – Year\n 468
* 'M' – Month\n 469
* 'D' – Day\n 470
* 'h' – Hour\n 471
* 'm' – Minute\n 472
* 's' – Second\n 473
* 'w' – Week\n 474
* 'T' – Time zone offset separator (+/-/Z) \n 475
\n 476
* 'A' – 10 day period within a month of a year\n 477
* 'B' – 1: First half month; 2: second half month\n 478
* 'E' – Week of a month\n 479
* 'G' – Working days\n 480
* 'H' – Half month\n 481
* 'I' – 1-9: Shift in a day\n 482
* 'K' – 1-5: First to fifth week in a month\n 483
* 'M' – Trimester: A period of three months\n 484
* 'N' – 1-7: Numeric representation of the day (Monday = 1, Sunday = 7)\n 485
* 'P' – A period of 4 months\n 486
* 'Q' – Quarter\n 487
* 'RR' – 00-99: Time period\n 488
* 'S' – Semester\n 489
*\n 490
* Hyphens and additional character in a format string are kept. According 491
to ISO 8601 a slash is used to separate time spans.\n 492
Codes from UNTDID 2379 and their representation in JSON\n 493
* '2' – is represented as 'date' format\n 494
* '3' – is represented as 'date' format\n 495
* '4' – is represented as 'date' format\n 496
* '5' – is represented as 'date-time' format\n 497
* '6' – is represented as 'CCYY-MM-B'\n 498
* '7' – is represented as 'CCYY-MM-K'\n 499
* '8' – is represented as 'CCYY-MM-DD-I'\n 500
* '9' – is represented as 'CCYY-MM-DD-RR'\n 501
* '10' – is represented as 'date-time' format\n 502
* '101' – is represented as 'date' format\n 503
* '102' – is represented as 'date' format\n 504
* '103' – is represented as 'YY-Www-N'; 01 is first week of January; 1 is 505
always Monday\n 506
* '104' – is represented as 'MM-WEE/MM-WEE'\n 507

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 27 of 50

* '105' – is represented as 'YY-DDD'; January the first = Day 001; Always 508
start numbering the days of the year from January 1st through December 509
31st \n 510
* '106' – is represented as '-MM-DD'\n 511
* '107' – is represented as 'DDD'\n 512
* '108' – is represented as 'WW'\n 513
* '109' – is represented as '-MM-'\n 514
* '110' – is represented as '--DD'\n 515
* '201' – is represented as 'date-time' format\n 516
* '202' – is represented as 'date-time' format\n 517
* '203' – is represented as 'date-time' format\n 518
* '204' – is represented as 'date-time' format\n 519
* '205' – is represented as 'date-time' format\n 520
* '206' – is represented as 'date-time' format\n 521
* '207' – is represented as 'date-time' format\n 522
* '208' – is represented as 'date-time' format\n 523
* '209' – is represented as 'date-time' format\n 524
* '210' – is represented as 'hh:mm:ssZhh:mm/hh:mm:ssZhh:mm'\n 525
* '301' – is represented as 'date-time' format\n 526
* '302' – is represented as 'date-time' format\n 527
* '303' – is represented as 'date-time' format\n 528
* '304' – is represented as 'date-time' format\n 529
* '305' – is represented as '-MM-DDThh:mm' format\n 530
* '306' – is represented as '--DDThh:mm' format\n 531
* '307' – is represented as 'date-time' format\n 532
* '308' – is represented as 'CCYY-MM-DDThh:mmZhh:mm/CCYY-MM-533
DDThh:mmZhh:mm' \n 534
* '401' – is represented as 'time' format\n 535
* '402' – is represented as 'time' format\n 536
* '404' – is represented as 'time' format\n 537
* '405' – is represented as 'duration' format\n 538
* '406' – is represented as 'Zhh:mm'\n 539
* '501' – is represented as 'hh:mm/hh:mm' \n 540
* '502' – is represented as 'hh:mm:ss/hh:mm:ss' \n 541
* '503' – is represented as 'hh:mm:ssZhh:mm/hh:mm:ssZhh:mm' \n 542
* '600' – is represented as 'CC'\n 543
* '601' – is represented as 'YY' \n 544
* '602' – is represented as 'CCYY' \n 545
* '603' – is represented as 'YY-S' \n 546
* '604' – is represented as 'CCYY-S' \n 547
* '608' – is represented as 'CCYY-Q' \n 548
* '609' – is represented as 'YY-MM' \n 549
* '610' – is represented as 'CCYY-MM' \n 550
* '613' – is represented as 'YY-MM-A' \n 551
* '614' – is represented as 'YY-MM-A' \n 552
* '615' – is represented as 'YY-Www \n 553
* '616' – is represented as 'CCYY-Www' \n 554
* '701' – is represented as 'YY/YY' \n 555
* '702' – is represented as 'CCYY/CCYY' \n 556
* '703' – is represented as 'YY-S/YY-S' \n 557
* '704' – is represented as 'CCYY-S/CCYY-S' \n 558
* '705' – is represented as 'YY-P/YY-P' \n 559
* '706' – is represented as 'CCYY-P/CCYY-P' \n 560
* '707' – is represented as 'YY-Q/YY-Q' \n 561
* '708' – is represented as 'CCYY-Q/CCYY-Q' \n 562
* '709' – is represented as 'YY-MM/YY-MM' \n 563
* '710' – is represented as 'CCYY-MM/CCYY-MM' \n 564
* '713' – is represented as 'YY-MM-DDThh:mm/YY-MM-DDThh:mm' \n 565
* '715' – is represented as 'YY-Www/YY-Www' \n 566
* '716' – is represented as 'CCYY-Www/CCYY-Www' \n 567
* '717' – is represented as 'YY-MM-DD/YY-MM-DD' \n 568

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 28 of 50

* '718' – is represented as 'CCYY-MM-DD/CCYY-MM-DD' \n 569
* '719' – is represented as 'CCYY-MM-DDThh:mm/CCYY-MM-DDThh:mm' \n 570
* '720' – is represented as 'NThh:mm/NThh:mm' \n 571
* '801' – is represented as 'duration' format \n 572
* '802' – is represented as 'duration' format \n 573
* '803' – is represented as 'duration' format \n 574
* '804' – is represented as 'duration' format \n 575
* '805' – is represented as 'duration' format \n 576
* '806' – is represented as 'duration' format \n 577
* '807' – is represented as 'duration' format \n 578
* '808' – is represented as 'S' \n 579
* '809' – is represented as 'P' \n 580
* '810' – is represented as 'M' \n 581
* '811' – is represented as 'H' \n 582
* '812' – is represented as 'A' \n 583
* '813' – is represented as 'N' \n 584
* '814' – is represented as 'G' \n 585
", 586
 "oneOf": [587
 { "const": "CCYY-MM-B" }, 588
 { "const": "CCYY-MM-K" }, 589
 { "const": "CCYY-MM-DD-I" }, 590
 { "const": "CCYY-MM-DD-RR" }, 591
 { "const": "YY-Www-N" }, 592
 { "const": "MMWEE/MMWEE" }, 593
 { "const": "YY-DDD" }, 594
 { "const": "-MM-DD" }, 595
 { "const": "DDD" }, 596
 { "const": "-WW" }, 597
 { "const": "-MM-" }, 598
 { "const": "--DD" }, 599
 { "const": "hh:mm:ssZhh:mm/hh:mm:ssZhh:mm" }, 600
 { "const": "-MM-DDThh:mm" }, 601
 { "const": "--DDThh:mm" }, 602
 { "const": "CCYY-MM-DDThh:mmZhh:mm/CCYY-MM-DDThh:mmZhh:mm" }, 603
 { "const": "Zhh:mm" }, 604
 { "const": "hh:mm/hhmm" }, 605
 { "const": "hh:mm:ss/hh:mm:ss" }, 606
 { "const": "hh:mm:ssZhh:mm/hh:mm:ssZhh:mm" }, 607
 { "const": "CC" }, 608
 { "const": "YY" }, 609
 { "const": "CCYY" }, 610
 { "const": "CCYY-S" }, 611
 { "const": "CCYY-Q" }, 612
 { "const": "YY-MM" }, 613
 { "const": "CCYY-MM" }, 614
 { "const": "YY-MM-A" }, 615
 { "const": "CCYY-MM-A" }, 616
 { "const": "YY-Www" }, 617
 { "const": "CCYY-Www" }, 618
 { "const": "YY/YY" }, 619
 { "const": "CCYY/CCYY" }, 620
 { "const": "YY-S/YY-S" }, 621
 { "const": "CCYY-S/CCYY-S" }, 622
 { "const": "YY-P/YY-P" }, 623
 { "const": "CCYY-P/CCYY-P" }, 624
 { "const": "YY-Q/YY-Q" }, 625
 { "const": "CCYY-Q/CCYY-Q" }, 626
 { "const": "YY-MM/YY-MM" }, 627
 { "const": "CCYY-MM/CCYY-MM" }, 628
 { "const": "YY-MM-DDThh:mm/YY-MM-DDThh:mm" }, 629

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 29 of 50

 { "const": "YYWww/YYWww" }, 630
 { "const": "CCYYWww/CCYYWww" }, 631
 { "const": "YY-MM-DD/YY-MM-DD" }, 632
 { "const": "CCYY-MM-DD/CCYY-MM-DD" }, 633
 { "const": "CCYY-MM-DDThh:mm/CCYY-MM-DDThh:mm" }, 634
 { "const": "NThh:mm/NThh:mm" }, 635
 { "const": "S" }, 636
 { "const": "P" }, 637
 { "const": "M" }, 638
 { "const": "H" }, 639
 { "const": "A" }, 640
 { "const": "N" }, 641
 { "const": "G" } 642
] 643
} 644

3.5.5 Other Qualified Data Types 645

In the CCTS code and identifier lists are specified as qualified data types (QDT). They base 646
on the UDT codeType or idType The UDT codeType and as before described idType 647
offers the ability to state code list or identification scheme specific properties like the 648
publishing agency or the used code list version or schema version. 649

Not in every code list and identification scheme or qualified data type all of these properties 650
are applicable, which is taken into account. 651
[R 27|1] 652
Each QDT that does not fall under section 3.5.4 SHALL be restricted according to its 653
definition applying the method described in section 3.6.1. 654
[Example] 655
"unitMeasureType": { 656
 "title": "Unit_ Measure. Type", 657
 "description": "A numeric value determined by measuring an object along 658
with the specified unit of measure.", 659
 "$ref" : "#/$defs/udt/measureType", 660
 "required": ["unitCode"], 661
 "properties": { 662
 "unitCodeListVersionId": false 663
 } 664
} 665
 666
[R 28|1] 667
Each QDT SHALL be represented in a subschema. If code or id values are specified locally, 668
they SHALL be as a oneOf combination of const definitions. They SHALL NOT be 669
specified as enum arrays. Each code value SHALL be represented as a string type. If the 670
values of codes and ids are organised in code and identification schemes the corresponding 671
JSON schema SHALL refer to the appropriate code list or identification scheme. 672
 673
[R 29|1] 674
Each code list and identification scheme SHALL be specified in a separate JSON schema 675
file. 676

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 30 of 50

A JSON schema file SHALL be created for each code list and identification scheme being 677
used. Its name SHALL represent the name of the code list or identification scheme and 678
SHALL be unique with the following form: 679
 680
<Code List Agency Name>_<Code List Name or Identifier>.json 681
 682
<Identification Scheme Agency Name>_<Identification Scheme 683
Name or Identifier>.json 684
 685
Where: 686
• All special characters SHALL be removed from the name. A period . in the version 687

number is replaced by the letter p. 688
• <Code List Agency Name> – Agency that maintains the code list. 689
• <Identification Scheme Agency Name> – Agency that maintains the identification 690

scheme. 691
• <Code List Name or Identifier> – If a code list identifier exists in the UNTDID, the 692

identifier is given in the format UNTDID<identifier>. Else the code list name is 693
stated as assigned by the publishing agency. 694

• <Identification Scheme Name or Identifier> – If an identification scheme identifier 695
exists in the UNTDID, the identifier is given in the format UNTDID<identifier>. 696
Else the identification scheme name is stated as assigned by the publishing agency. 697

 698
The file SHALL be placed in a subfolder codelists of the export path. The $id 699
property SHALL reflect this subfolder structure. 700
[Example] 701
UNECE_UNTDID-1001.json 702
OpenPEPPOL_DocumentTypes.json 703
 704
[R 30|2] 705
It is a clear goal to keep the JSON schema artefacts as compatible with code lists and 706
identification schemes as possible. For this reason the code list version and identification 707
scheme version is neither part of the .json filename nor part of the type name. But it is part 708
of the $id, so that JSON schema files can be used for differentiating versions if needed. If 709
for some reason more than one version of a code list or identification scheme needs to be 710
used in a specific scenario, the <Code List Version> or <Identification 711
Scheme Version> SHOULD be added to the file name in the following format: 712
 713
<Code List Agency Name>_<Code List Name or Identifier>_<Code 714
List Version>.json 715
 716
<Identification Scheme Agency Name>_<Identification Scheme 717
Name or Identifier>_<Identification Scheme Version>.json 718

Since the invention of JSON, there has been repeated discussion about whether JSON 719
should support comments in schema files. In terms of its basic concept, JSON is data-only 720
and it was deliberately decided not to support comments. Nevertheless, as versioning 721
progressed, annotations such as description and also $comment were introduced. The latter 722
is supposed to be ignored by parsers and should not be used to present information to 723

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 31 of 50

schema users. Instead $comment is only intended to contain information for future schema 724
developers e.g. to highlight schema maintenance information9. A much discussed topic for 725
years is the commenting of enums. 726

JSON Schema does not support comments in the .JSON file analogous to the double slash 727
in languages like C or the hashtag as in PHP. Some JSON editors support such comments 728
proprietarily. However, usually only one of the two variants, which often correspond to the 729
conventions of one's own programming language. Since there is consequently no universal 730
convention, the UNECE JSON Schema code and identifier lists dispense with such 731
proprietary comments. 732

This NDR technical specification is created with the goal of applicability of the JSON 733
schema artefacts for use in OpenAPI specifications. This means that for the implementer of 734
such a specification, the documentation of the individual code or identifier values is 735
important. 736

Starting with OpenAPI 3.1 the preferred representation of code lists is a oneOf 737
combination of const definitions. This allows code names and definitions to be added 738
directly to the definition of each individual code. In addition, further amendments like 739
adding validity periods for individual code values become possible. 740
 [R 31|1] 741
The description property of the JSON schema specifying a code or identifier list 742
SHALL list the copyright notice information as defined in the CCL. This includes the code 743
or identifier list name, code or identifier list agency, code or identifier list version, and 744
copyright information. 745
 746
 [R 32|2] 747
The title property of the subschema specifying the const definitions holding the values 748
of a code or identifier list SHOULD be the code name value in English language. 749
The description property of the subschema specifying the const definitions holding 750
the values of a code or identifier list SHOULD be the code definition value in English 751
language. 752

The following rule defines the representation of code and identifier lists as files. 753
[R 33|1] 754
Code lists SHALL be represented in a subschema of the corresponding schema file with the 755
following naming convention: 756
$defs/codeList/<Code List Name or Identifier>Type 757

9 See https://json-schema.org/understanding-json-schema/reference/generic.html#comments

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 32 of 50

with <Code List Name or Identifier> – If a code list identifier exists in the UNTDID, the 758
identifier is given in the format untdid<identifier>. Else the code list name is stated as 759
assigned by the publishing agency with special characters removed. 760

The following example shows a complete code list JSON schema file content. 761
[Example] 762
{ 763
 "$schema": "https://json-schema.org/draft/2019-09/schema", 764
 "$id": "https://service.unece.org/trade/uncefact/json-765
schema/D22A/UNECE_UNTDID-3131", 766
 "title": "Address type code", 767
 "description": "<<copyright notice information>>", 768
 "$defs": { 769
 "codeList": { 770
 "untdid3131Type": { 771
 "title": "Address type code", 772
 "oneOf": [773
 { 774
 "const": "1", 775
 "title": "Postal Address" 776
 }, 777
 { 778
 "const": "2", 779
 "title": "Fiscal Address" 780
 }, 781
 { 782
 "const": "3", 783
 "title": "Physical Address" 784
 }, 785
 { 786
 "const": "4", 787
 "title": "Business Address" 788
 }, 789
 { 790
 "const": "5", 791
 "title": "Delivery To Address" 792
 }, 793
 { 794
 "const": "6", 795
 "title": "Residential Address" 796
 }, 797
 { 798
 "const": "7", 799
 "title": "Mail To Address" 800
 }, 801
 { 802
 "const": "8", 803
 "title": "Postbox Address" 804
 } 805
] 806
 } 807
 } 808
 } 809
} 810
 811
[R 34|1] 812
Identification schemes SHALL be represented in a subschema of the corresponding schema 813
file with the following naming convention: 814

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 33 of 50

$defs/identificationScheme/<Indentification Scheme Name or 815
Identifier>Type 816
with < Identification Scheme Name or Identifier> – If an identification scheme identifier 817
exists in the UNTDID, the identifier is given in the format untdid<identifier>. Else the code 818
or identification scheme name is stated as assigned by the publishing agency with special 819
characters removed. 820

The following example shows a complete identification scheme JSON schema file content. 821
[Example] 822
{ 823
 "$schema": "https://json-schema.org/draft/2019-09/schema", 824
 "$id": "https://service.unece.org/trade/uncefact/json-825
schema/D22A/ISO_639-1-2A", 826
 "title": "Language identifier", 827
 "description": "<<copyright notice information>>", 828
 "$defs": { 829
 "identificationScheme": { 830
 "iso639-1-2AType": { 831
 "title": "Language identifier", 832
 "oneOf": [833
 { 834
 "const": "AR", 835
 "title": "ARABIC" 836
 }, 837
 { 838
 "const": "AS", 839
 "title": "ASSAMESE" 840
 }, 841
 { 842
 "const": "AV", 843
 "title": "AVARIC" 844
 }, 845
 { 846
 "const": "AY", 847
 "title": "AYMARA" 848
 }, 849
 { 850
 "const": "AZ", 851
 "title": "AZERBAIJANI" 852
 }, 853
 { 854
 "const": "BA, 855
 "title": "BASHKIR" 856
 }, 857
 { 858
 "const": "BE", 859
 "title": "BELARUSIAN" 860
 } 861
] 862
 } 863
 } 864
 } 865
} 866
 867

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 34 of 50

3.6 Restriction and Extension 868

3.6.1 Restriction 869

The CCTS defines methods of restriction to create e.g. industry specific profiles of the 870
CCL. One output of this process are the Reference Data Models (RDMs) being published 871
like the Supply-Chain-Reference-Data Model (SCRDM) or the Multi-Modal-Transport- 872
Reference-Data-Model (MMT RDM). For data transmission via messages, this method is 873
also used to restrict cardinalities and values of code or identifier list. A significant part of 874
the standardisation activity of UN/CEFACT has been dealing with this very issue for many 875
years. 876

As defined in rule [R 9|1] for each individual layer of data models a separate JSON schema 877
file is published. 878
[R 35|1] 879
Restrictions to CCTS objects SHALL be represented in a subschema as follows: 880
Cardinalities 881
• From 0..1 to 1..1 882
[Example] 883
"toBeRestrictedType": { 884
 "type": "object", 885
 "properties": { 886
 "id": { "type": "string" } 887
 } 888
}, 889
"restrictingType": { 890
 "$ref": "#/$defs/toBeRestrictedType", 891
 "required": ["id"] 892
} 893
• From 0..1 to 0..0 (forbidden) 894
[Example] 895
"toBeRestrictedType": { 896
 "type": "object", 897
 "properties": { 898
 "id": { "type": "string" }, 899
 "name": { "type": "string" } 900
 } 901
}, 902
"restrictingType": { 903
 "$ref": "#/$defs/toBeRestrictedType", 904
 "properties": { 905
 "id": false 906
 } 907
} 908
• From 0..unbounded to 0..n with n < unbounded 909
[Example with n=2] 910
"toBeRestrictedType": { 911
 "type": "object", 912
 "properties": { 913
 "id": { 914
 "type": "array", 915
 "items": { "type": "string } 916

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 35 of 50

 } 917
 } 918
}, 919
"restrictingType": { 920
 "$ref": "#/$defs/toBeRestrictedType", 921
 "properties": { 922
 "id": { "maxItems": 2 } 923
 } 924
} 925
• From 0..unbounded to n..unbounded 926
[Example with n=2] 927
"toBeRestrictedType": { 928
 "type": "object", 929
 "properties": { 930
 "id": { 931
 "type": "array", 932
 "items": { "type": "string } 933
 } 934
 } 935
}, 936
"restrictingType": { 937
 "$ref": "#/$defs/toBeRestrictedType", 938
 "properties": { 939
 "id": { "minItems": 2 } 940
 } 941
} 942
Restriction of value ranges 943
[Example restricting content to values with exact 2 fraction digits] 944
"restrictingType": { 945
 "allOf": [946
 { "$ref": "UNECE-BasicComponents.json#/$defs/udt/amountType" }, 947
 { "properties": { 948
 "content": { "pattern": "^.*\..{2}$" } 949
 } 950
 } 951
] 952
} 953
Restriction of const 954
[Example restricting content to a code list subset] 955
"addressType": { 956
 "type": "object", 957
 "properties": { 958
 "countryId": { "$ref": "UNECE-959
BasicComponents.json#/$defs/qdt/countryIdType"} 960
 } 961
}, 962
"restrictingType": { 963
 "allOf": [964
 { "$ref": " #/$defs/addressType" }, 965
 { "properties": { 966
 "countryId": { "const": ["CH", "DE", "FR"] } 967
 } 968
 } 969
] 970
} 971

The same type of restriction can be applied if restrictions are defined on a lower level. 972
 973

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 36 of 50

[Example] 974

{ 975
 "$defs": { 976
 "restriction": { 977
 "allOf": [978
 { 979
 "$ref": "#/$defs/levelOne" 980
 }, 981
 { 982
 "properties": { 983
 "oneFirst": { 984
 "properties": { 985
 "twoFirst": false 986
 } 987
 } 988
 } 989
 } 990
] 991
 }, 992
 "levelOne": { 993
 "type": "object", 994
 "properties": { 995
 "oneFirst": { 996
 "$ref": "#/$defs/levelTwo" 997
 }, 998
 "oneSecond": { 999
 "type": "string" 1000
 } 1001
 } 1002
 }, 1003
 "levelTwo": { 1004
 "type": "object", 1005
 "properties": { 1006
 "twoFirst": { 1007
 "type": "string" 1008
 }, 1009
 "twoSecond": { 1010
 "type": "string" 1011
 } 1012
 } 1013
 } 1014
 } 1015
} 1016

Figure 2: Example for second level restrictions 1017

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 37 of 50

3.6.2 Extension 1018

The CCTS does not support extensions. Therefore, no NDR rules analogous to the 1019
Restrictions chapter can be set up for the CCTS that extend cardinalities, value ranges or 1020
enum. Should an implementation nevertheless require such an extension, the result is no 1021
longer compliant with the artefacts according to this technical specification. Technically, 1022
this can be achieved by combining a schema with anyOf. 1023

However, especially when implementing OpenAPI specifications, extensions to the 1024
properties are needed. For example, to add metadata to the API endpoints. 1025
[R 36|1] 1026
The BasicComponents SHALL define a JSON subschema for extension as follows: 1027
"$defs": { 1028
 "extensibleType": { 1029
 "patternProperties": { "^x-": true} 1030
 } 1031
} 1032

The extensibleType allows users to add their own JSON properties to the JSON 1033
subschemas. The only rule they have to follow is that they must start with x-. This makes it 1034
compliant to the extension method defined in the OpenAPI specification. An example can 1035
be found in the next section in rule [R 41|1]. 1036

3.6.3 Publication and reusing contextualization 1037

The CCL is undergoing a continuous development. This way it contains definitions that are 1038
not used any more in newer versions. In order to prevent confusion with published data 1039
types that are not used any more the RDM level is the lowest export level for any 1040
UN/CEFACT publication. 1041
[R 37|1] 1042
The base of all JSON schema exports SHALL be the RDM level. This means that each 1043
underlying CCL basic data type SHALL be profiled and contextualised according to the 1044
RDM definition. Only data types that are used in an RDM SHALL be exported. 1045

If the rules defined in this section are applied to the entire CCL, the resulting JSON 1046
artefacts can become complex and very large. This approach creates a high level of 1047
traceability of the restrictions and ensures a consistent (re-)use of the individual data types. 1048

In a practical application of an API, however, these libraries can be unnecessarily large. 1049
Especially if only a subset of the CCL is used. 1050

Therefore, it can be useful to export "snapshots" of the required (sub-) structures as JSON 1051
artefacts. The procedure here corresponds to the XML design principle "Venetian blind": 1052
Only one JSON schema file is created, which contains all the required data types for the use 1053

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 38 of 50

case. All properties that are not required are not even exported. Restrictions are kept to a 1054
minimum. Compliance with the CCL is mandatory. 1055
[R 38|2] 1056
A user community may decide to create "snapshot" JSON schema artefacts for a specific 1057
subset of the CCL. A "snapshot" JSON schema artefact SHALL contain all relevant data 1058
types that are needed to define the subset. The "snapshot" JSON schema artefact MAY 1059
contain additional restrictions and extensions. 1060

Together with the "snapshot" export there exist three possible ways of creating JSON 1061
schema artefacts: 1062

Export
variant

Description

Library
export

The library export creates one JSON schema file for each level of
contextualisation as they are defined by the UN/CEFACT standards. It
creates one large CCL JSON schema representation as a foundation. On top
of it it creates one JSON schema file contextualising and restricting the
CCL to the defined RDMs and document-centric structures.

Pro
The complete CCL, all RDMs as well as all (document-centric) message
structure definitions are exported as defined by UN/CEFACT standards. A
maximum of re-usable data structures and definitions are created. It assures
by design that any implementation is consistent and ready for any process-
amendment.

Contra
Any implementation needs to handle the huge CCL library as a base import
as well as the multi-layer-restrictions as they are defined by UN/CEFACT
standards. For example the eCMR message is defined as a contextualisation
of a master message structure for all document-centric messages defined by
UN/CEFACT. The contained data structure is process specific
contextualisation of a multi modal transport reference data model. The
MMT-RDM is a transport specific contextualisation of the Buy-Ship-Pay
reference data model. And this again is a contextualisation of the
underlying CCL.

Thus an implementation could get rather complex while at the same time
achieving a maximum compliance level.

Subset
export

The subset export follows the same principles as the library export with one
major difference: Only the needed data structures of the selected subset are
exported. All other data structures are omitted. This way the file size and
content is reduced to a minimum set of information, while at the same time
keeping all relations available.

Pro
In addition to the arguments defined in the library export the subset export
is easier to handle in respect of file size and quantity of data objects.

Contra

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 39 of 50

The complexity of layers of contextualisation is still the same as with the
library export. Amendments of the subset lead to changes in the underlying
objects. Only those data objects are exported that are needed for a specific
subset. When the scope of the subset is widened in a future version, it may
need additional objects in the underlying data structures. This means that
implementations of the subset need to be updated at all players at the same
time.

Snapshot
export

Content wise the snapshot export is equal to the subset export. The main
difference is that the multi-layer-contextualisation over a set of several
JSON schema files is removed. Only one single JSON schema file is
created that contains all necessary data structures of the snapshot objects. It
is comparable with the XML "Ventian Blind" approach. Underlying data
objects are still defined (like a party data type). But they only contain
schema objects being used in the snapshot selection.

Pro
The complexity for the given snapshot is reduced to a minimum. Only one
single self-contained JSON schema file is created. The JSON schema file
can easily be used by all common JSON tools as well as OpenAPI design
tools. The exported data structures are compliant to the UN/CEFACT
standards and reflect "the compilation" of all restrictions and
contextualisation.

Contra
One self-contained JSON schema file is created for each individual
snapshot. If this approach is used in a pre-defined environment it works
quite well. Thus it is important to clearly define the snapshot content in
advance.
Things start to get complicated if in one implementation more than one self-
contained JSON schema files are used. Let's assume that for example one
self-contained JSON schema file is created for each document-centric
message (as it is done with XML schema files). Each of those JSON
schema files defined the underlying data types (e.g. party). In an OpenAPI
specification, it is not so easy to combine those multiple schema files into
one single OpenAPI file as it may come to conflicts between the underlying
data types. The reason is that the same data type with the same name may
have a diverging contextualisation between the different JSON schema
files.

Table 8: Export variants 1063
[R 39|1] 1064
A UNECE publication SHALL provide a library export on a server being able to handle the 1065
necessary requirements for a global community accessing the published artefacts. 1066
In addition, UNECE SHOULD provide an additional snapshot export for each 1067
contextualised document ABIE. 1068
 1069

[Note] 1070

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 40 of 50

As the $id property of a JSON schema must represent a valid URL aspects 1071
of scalability of the provided service have to be taken into account. One 1072
option could be to provide the publication in a GIT-compliant repository. 1073

3.7 ABIE and BBIE representation in JSON Schema 1074

[R 40|1] 1075
Each ABIE SHALL be represented in a JSON subschema. ABIEs that are marked as 1076
deprecated from a former version SHALL NOT be represented in a JSON subschema. 1077
 1078

[Note] 1079

For example an ABIE is defined to be deprecated starting in version D20B. 1080
When the JSON schema artefacts for version D21A are exported, the ABIE 1081
SHALL NOT be represented in this export. 1082
 1083
[R 41|1] 1084
All ABIE representations in JSON subschemas SHALL include a reference to the 1085
extensibleType. 1086
[Example] 1087
"abieType": { 1088
 "title": "The Dictionary Entry Name", 1089
 "description": "The description", 1090
 "type": "object", 1091
 "properties": { 1092
 "p1": { "type": "string" } 1093
 }, 1094
 "required": ["p1"], 1095
 "$ref": "UNECE-BasicComponents.json#/$defs/extensibleType", 1096
 "unevaluatedProperties": false 1097
 } 1098
} 1099
[Example of a valid JSON object] 1100
{ 1101
 "p1": "value", 1102
 "x-addedStringProperty": "added value", 1103
 "x-addedObjectProperty": { "content": "a123"} 1104
} 1105
[Example of an invalid JSON object] 1106
{ 1107
 "p1": "value", 1108
 "addedStringProperty": "added value" 1109
} 1110
 1111
[R 42|2] 1112
Extension property names SHOULD follow the same naming conventions as defined in this 1113
technical specification. 1114

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 41 of 50

3.7.1 ASBIE representation in JSON Schema supporting document 1115
based and resource-based information 1116

The CCTS was invented for the purpose of standardising and modelling classic EDI 1117
messages. Even today, document-based data exchange is still predominant, especially in the 1118
B2B and B2A environment. 1119

As described at the beginning of this technical specification, REST APIs are characterised 1120
by the fact that they are not based on the exchange of business documents, but on the 1121
management of resources. This means that, for example, business partner information can 1122
be managed separately from transaction data such as an invoice or a transport order. In 1123
CCTS, these are all the places where ABIEs are associated with each other in the form of 1124
ASBIEs. 1125

With the aim of supporting REST APIs via the JSON schema artefacts, it is precisely at this 1126
point that the option of switching from document-centred to resource-centred data exchange 1127
must be supported. 1128

Resource-based data management means that resources must have unique identifiers. 1129
Therefore, only those ABIEs can be converted to resources that have a unique identifier. 1130
Using this unique identifier represented as an URI, the information about a buyer in an 1131
order can be retrieved following the URI to the party information of the buyer. 1132
 1133
[R 43|1] 1134
The BasicComponents SHALL define a JSON subschema for resource based data exchange 1135
as follows: 1136
"$defs": { 1137
 "resourceType": { 1138
 "type": "string", 1139
 "format": "uri" 1140
 } 1141
} 1142
 1143
[R 44|1] 1144
All ASBIEs whose ABIEs contain an identifier SHALL be modelled using an oneOf 1145
choice between the resourceType and the associated ABIE. 1146
All other ASBIEs SHALL be referenced directly. 1147
In both cases, the defined cardinality SHALL be observed. 1148
To stay focused title, description etc. are not shown in the following example. 1149
[Example] 1150
"$defs": { 1151
 "invoiceType": { 1152
 "type": "object", 1153
 "properties": { 1154
 "buyer": { 1155
 "oneOf": [1156
 { "$ref": "UNECE-BasicComponents.json#/$defs/resourceType" }, 1157

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 42 of 50

 { "$ref": "#/$defs/partyType" } 1158
] 1159
 } 1160
 }, 1161
 "required": ["buyer"], 1162
 "$ref": "UNECE-BasicComponents.json#/$defs/extensibleType", 1163
 "unevaluatedProperties": false 1164
 }, 1165
 "partyType": { 1166
 "type": "object", 1167
 "properties": { 1168
 "id": { 1169
 "type": "array", 1170
 "items": { 1171
 "$ref": "UNECE-BasicComponents.json#/$defs/udt/identifierType" 1172
 } 1173
 }, 1174
 "name": { "type": "string" }, 1175
 "postalTradeAddress": { "$ref": "#/$defs/addressType" } 1176
 }, 1177
 "$ref": "UNECE-BasicComponents.json#/$defs/extensibleType", 1178
 "unevaluatedProperties": false 1179
 }, 1180
 "addressType": { 1181
 "type": "object", 1182
 "properties": { 1183
 "street": { "type": "string"}, 1184
 "city": { "type": "string"}, 1185
 "postalCode": { "type": "string"}, 1186
 "countryCode": { "$ref": "UNECE-1187
BasicComponents.json#/$defs/qdt/countryIdType"} 1188
 }, 1189
 "$ref": "UNECE-BasicComponents.json#/$defs/extensibleType", 1190
 "unevaluatedProperties": false 1191
 } 1192
} 1193

 1194

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 43 of 50

4 Appendix A: Complete Example 1195

This section provides an illustrative example of many of the constructs described in this 1196
guidance document. 1197

4.1 Certificate of Origin Model 1198

4.2 JSON Schema serialization 1199

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 44 of 50

5 Appendix B: Naming and Design Rules List 1200

Rule # Rule

[R 1|1]

Conformance SHALL be determined through adherence to the content of the
normative sections and rules. Furthermore, each rule is categorized to indicate the
intended audience for the rule by the following:
1. Rules which must not be violated. Else conformance and interoperability is lost.
2. Rules which may be modified while still conformant to the NDR structure.

[R 2|1]

In the scope of this specification, a JSON schema is a file that complies to a JSON
schema definition as defined at https://json-schema.org. It may include subschemas
defined in the $defs section. A JSON schema fragment means both the overall
JSON schema as well as each of its included subschemas.

[R 3|1]

Each JSON schema SHALL be declared to be a “JSON Draft 2020-12 schema ” with
the appropriate $schema string property defined as https://json-
schema.org/draft/2020-12/schema.

[R 4|1] Each JSON schema SHALL contain a "title" annotation. It SHALL be an overall
description title.

[R 5|1] Each JSON schema SHALL contain a "description" annotation. It contains an
overall description for that file as well as copyright information.

[R 6|1]

Each declared Document and Library ABIE definitions and their BBIE and ASBIE
members SHALL contain a "title" annotation and a "description"
annotation. The "title" annotation SHALL be the CCTS Dictionary Entry name for
the BIE. "description" annotation shall be the CCTS definition value. Members
of enums SHALL NOT contain the "title" or the "description" annotation.

[R 7|1]

The "unevaluatedProperties" property of each JSON schema fragment
SHALL be set to false, excluding subschemas for primitive data types, unqualified
data types and qualified data types. For subschemas specifying primitive data types,
unqualified data types or qualified data types the "unevaluatedProperties"
property SHALL be stated as defined in this document.

[R 8|1]

The JSON schema file names SHALL NOT contain a version information. Differences
in versions are only indicated by $id and the folder structure in which the JSON
schema artefacts are located.

[R 9|1]

Each JSON schema being published by user groups or standardisation organisations
SHALL contain an identifier for the schema in the appropriate $id URI property.
JSON schema exports that are only used in a closed environment (e.g. for testing)
do NOT NEED to contain the $id property. The URI SHALL follow the following
format:
"$id": "<basepath>/<version>/<BIE>"
with <basepath> identifying the originator. For UNECE artefacts that is
 "https://service.unece.org/trade/uncefact/json-
schema"
 <version> in the UNECE publication format e.g. "D22A"
 <BIE> with one

- distinct name for each document ABIE without a file extension
- name for all BBIE components: "BasicComponents"
- distinct name for every RDM set of Library ABIE components
- distinct name for each extension collection

The JSON schema file name SHALL be build with the following format:
<originator>-<abbreviation>.json
with
<originator> identifying the originator. For UNECE artefacts

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 45 of 50

 it SHALL be UNECE.
 - <abbreviation> identifying the RDM set of Library ABIE components

[R 10|1] The BasicComponents JSON schema file SHALL contain all subschemas for
primitive data types, unqualified data types as well as qualified data types.

[R 11|1] A property is a name/value pair inside a JSON object. The property name is the key
or name part of the property. The property value is the value part of the property.

[R 12|1] JSON property names SHALL be derived from Dictionary Entry Names (DEN).
In e.g. in a BBIE the DEN contains the DEN of the surrounding ABIE, it SHALL be
removed. If by applying the NDR rules words in the DEN are duplicated, the
duplication SHALL be removed.

[R 13|1] Any special characters such full stops . and underscores _ SHALL be removed
from the underlying Dictionary Entry Name. If a digit (0-9) was before and another
digit after the white space, the white space SHALL be replaced by a hyphen -.

[R 14|1] JSON property names SHALL be lower camel-cased ASCII strings and JSON
schema compliant: The character after a white space shall be a capital letter. Capital
letters in the DEN SHALL NOT be kept.

[R 15|1] The abbreviations and acronyms SHALL be used as defined in Table 4.
[R 14|1] SHALL be taken into account.

[R 16|1] The Object Class Term "Identification Scheme" SHALL be represented as
"Scheme". [R 14|1] SHALL be taken into account.

[R 17|1] Primitive data types (PDT) SHALL be represented in JSON schema, as stated in
Table 6. They SHALL be placed under $defs/pdt/.

[R 18|1] Unqualified data types SHALL be represented in subschemas. "Type" as part of the
Dictionary Entry Name SHALL be retained.

[R 19|1]

The CCTS content property SHALL be represented in a subschema with the name
"content". Its data type SHALL use the underlying PDT. The content-property
SHALL be required.

[R 20|1]

Property names of supplementary components SHALL NOT repeat the JSON
subschemas property name.

[R 21|1]

Supplementary components may reference to code lists and/or identification
schemes. In this case the JSON property SHALL reference the appropriate code list
or identification scheme as defined in section 3.5.5 Other Qualified Data Types.

[R 22|1]

Unqualified data types SHALL be represented in subschemas as shown in Table 7.
The title and description properties are not shown in the following table.
Instead they are indicated with the placeholder <title and description> as
those can change over time. They SHALL be published in alignment with rules [R
4|1], [R 5|1], and [R 6|1].
They SHALL be placed under $defs/udt.

[R 23|1]

The "Date Mandatory_ Date Time. Type" SHALL be replaced by the
formattedDateTimeType.

[R 24|1]

The "Time Only_ Formatted_ Date Time. Type" SHALL be replaced
by the formattedDateTimeType.

[R 25|1]

The "Formatted_ Date Time. Type" SHALL be represented as follows.
"formattedDateTimeType": {
 <<title and description>>
 "oneOf": [
 { "type": "string", "format": "date-time" },
 { "type": "string", "format": "time" },
 { "type": "string", "format": "date" },
 { "type": "string", "format": "duration" },
 { "type": "object",
 "properties": {

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 46 of 50

 "content": { "type": "string" },
 "format": { "$ref": "UNECE_UNTDID2379-
JSON.json#/$defs/codeList/untdid2379JsonType" }
 },
 "required": ["content", "format"]
 }
]
}

[R 26|1] Based on the code list "UNTDID 2379" an additional code list "UNTDID 2379
json" SHALL be specified. All format definitions that are already represented in
their meaning by existing JSON date and time formats SHALL be omitted. This code
list SHALL be maintained in accordance with UNTDID 2379. It is represented in R
26.

[R 27|1]

Each QDT that does not fall under section 3.5.4 SHALL be restricted according to its
definition applying the method described in section 3.6.1.

[R 28|1]

Each QDT SHALL be represented in a subschema. If code or id values are specified
locally, they SHALL be as a oneOf combination of const definitions. They SHALL
NOT be specified as enum arrays. Each code value SHALL be represented as a
string type. If the values of codes and ids are organised in code and identification
schemes the corresponding JSON schema SHALL refer to the appropriate code list
or identification scheme.

[R 29|1]

Each code list and identification scheme SHALL be specified in a separate JSON
schema file.
A JSON schema file SHALL be created for each code list and identification scheme
being used. Its name SHALL represent the name of the code list or identification
scheme and SHALL be unique with the following form:

<Code List Agency Name>_<Code List Name or
Identifier>.json

<Identification Scheme Agency Name>_<Identification
Scheme Name or Identifier>.json

Where:
• All special characters SHALL be removed from the name. A period . in the

version number is replaced by the letter p.
• <Code List Agency Name> – Agency that maintains the code list.
• <Identification Scheme Agency Name> – Agency that maintains the

identification scheme.
• <Code List Name or Identifier> – If a code list identifier exists in the UNTDID,

the identifier is given in the format UNTDID<identifier>. Else the code list
name is stated as assigned by the publishing agency.

• <Identification Scheme Name or Identifier> – If an identification scheme
identifier exists in the UNTDID, the identifier is given in the format
UNTDID<identifier>. Else the identification scheme name is stated as
assigned by the publishing agency.

The file SHALL be placed in a subfolder codelists of the export path. The $id
property SHALL reflect this subfolder structure.

[R 30|2]

It is a clear goal to keep the JSON schema artefacts as compatible with code lists and
identification schemes as possible. For this reason the code list version and
identification scheme version is neither part of the .json filename nor part of the type
name. But it is part of the $id, so that JSON schema files can be used for
differentiating versions if needed. If for some reason more than one version of a code

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 47 of 50

list or identification scheme needs to be used in a specific scenario, the <Code
List Version> or <Identification Scheme Version> SHOULD be
added to the file name in the following format:

<Code List Agency Name>_<Code List Name or
Identifier>_<Code List Version>.json

<Identification Scheme Agency Name>_<Identification
Scheme Name or Identifier>_<Identification Scheme
Version>.json

[R 31|1]

The description property of the JSON schema specifying a code or identifier list
SHALL list the copyright notice information as defined in the CCL. This includes
the code or identifier list name, code or identifier list agency, code or identifier list
version, and copyright information.

[R 32|2]

The title property of the subschema specifying the const definitions holding the
values of a code or identifier list SHOULD be the code name value in English
language. The description property of the subschema specifying the const
definitions holding the values of a code or identifier list SHOULD be the code
definition value in English language.

[R 33|1]

Code lists SHALL be represented in a subschema of the corresponding schema file
with the following naming convention:
$defs/codeList/<Code List Name or Identifier>Type
with <Code List Name or Identifier> – If a code list identifier exists in the UNTDID,
the identifier is given in the format untdid<identifier>. Else the code list name is
stated as assigned by the publishing agency with special characters removed.

[R 34|1] Identification schemes SHALL be represented in a subschema of the corresponding
schema file with the following naming convention:
$defs/identificationScheme/<Indentification Scheme Name
or Identifier>Type
with < Identification Scheme Name or Identifier> – If an identification scheme
identifier exists in the UNTDID, the identifier is given in the format
untdid<identifier>. Else the code or identification scheme name is stated as assigned
by the publishing agency with special characters removed.

[R 35|1]

Restrictions to CCTS objects SHALL be represented in a subschema as follows:
Cardinalities
• From 0..1 to 1..1
• From 0..1 to 0..0 (forbidden)
• From 0..unbounded to 0..n with n < unbounded
• From 0..unbounded to n..unbounded
Restriction of value ranges
Restriction of enums

[R 36|1]

The BasicComponents SHALL define a JSON subschema for extension as follows:

 "$defs": {
 "extensibleType": {
 "patternProperties": { "^x-": true}
 }
}

[R 37|1] The base of all JSON schema exports SHALL be the RDM level. This means that
each underlying CCL basic data type SHALL be profiled and contextualised
according to the RDM definition. Only data types that are used in an RDM SHALL
be exported.

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 48 of 50

[R 38|2] A user community may decide to create "snapshot" JSON schema artefacts for a
specific subset of the CCL. A "snapshot" JSON schema artefact SHALL contain all
relevant data types that are needed to define the subset. The "snapshot" JSON
schema artefact MAY contain additional restrictions and extensions.

[R 39|1] A UNECE publication SHALL provide a library export on a server being able to
handle the necessary requirements for a global community accessing the published
artefacts.
In addition, UNECE SHOULD provide an additional snapshot export for each
contextualised document ABIE.

[R 40|1] Each ABIE SHALL be represented in a JSON subschema. ABIEs that are marked as
deprecated from a former version SHALL NOT be represented in a JSON
subschema.

[R 41|1]

All ABIE representations in JSON subschemas SHALL include a reference to the
extensibleType.

[R 42|2]

Extension property names SHOULD follow the same naming conventions as defined
in this technical specification.

[R 43|1]

The BasicComponents SHALL define a JSON subschema for resource based data
exchange as follows:
"$defs": {
 "resourceType": {
 "type": "string",
 "format": "uri"
 }
}

[R 44|1]

All ASBIEs whose ABIEs contain an identifier SHALL be modelled using an
oneOf choice between the resourceType and the associated ABIE.
All other ASBIEs SHALL be referenced directly.
In both cases, the defined cardinality SHALL be observed.

 1201

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 49 of 50

6 Appendix C: Glossary 1202

Term Definition
ASCII American Standard Code for Information Interchange
ABIE Aggregate Business Information Entity – a term from CCTS that

describes an information class such as “consignment”
API Application Programming Interface – a term that references a machine-

to-machine interface.
ASBIE Association Business Information Entity – a term from CCTS that

defines a directed relationship from source ABIE to target ABIE – eg
“consignee” as a relationship between “consignment” and “party”

B2A Business-to-Administration
B2B Business to Business
BBIE Basic Business Information Entity – a term from CCTS that describes

a property of a class such as party.name
BIE Business Information Entity
CCL Core Component Library
CCT Core Component Type
CCTS Core Component Technical Specification – a UN/CEFACT

specification document that described the information management
metamodel.

CDT Core Data Type. A value domain for a BBIE that is a simple type such
as “text” or “code”

DEN Dictionary Entry Name
EN16931 Semantic data model of the core elements of an electronic invoice (the

European Norm).
HATEOS Hypermedia as the Engine of Application State
IETF Internet Engineering Task Force
IRI Internationalised Resource Identifiers – a version of the IETF URI

specification that support international character sets.
JSON JavaScript Object Notation – an IETF document syntax standard in

common use by web developers for APIs.
JSON-LD JSON-Linked Data – a JSON standard for linked data graphs /

semantic vocabularies.
NDR Naming & Design Rules – a set of rules for mapping one

representation (eg RDM) to another (eg JSON-LD)
OpenAPI An open source standard, language-agnostic interface to RESTful

APIs.
OWL Web Ontology Language
PDT Primitive data types
PHP Hypertext Preprocessor
QDT Qualified Data Type. A value domain for a BBIE that is a constrained

version of a CDT. Most often used with the “code” type – for example
“country_code”

RDF Resource Description Framework – a W3C semantic web standard
RDFS RDF Schema – an XML schema for RDF documents.
RDM Reference Data Model- a UN/CEFACT semantic output.
RESTful API See REST API

JSON Schema Naming and Design Rules V0.8 2022-03-30

 Page 50 of 50

Term Definition
REST API Representation State Transfer Application Programming Interface,

a.k.a. RESTful API
RFC Request for Comments
SDO Standards Development Organization
SHACL A W3C technical specification – the SHApes Constraint Language –

used to validate the structure of published semantic graphs
(vocabularies.)

UDT Unqualified data type
UNCEFACT United Nations Centre for Trade Facilitation and Electronic Business
UNECE United Nations Economic Commission for Europe
URI Uniform Resource Identifier – a namespace qualified string of

characters that unambiguously identify a resource. AURL is one type
of URI.

URL Uniform Resource Locator – the web address of a resource.
UNTDID United Nations Trade Data Interchange Directory
XML Extensible Markup Language
XMI Xml Metadata Interchange - a well established OMG standard for

exchange of UML models between different tools.
Table 9 - Glossary 1203

	Abstract
	1.1 Document History
	1.2 Change Log
	1.3 JSON Schema Naming and Design Rules Project Team
	1.4 Acknowledgements
	1.5 Contact information
	1.6 Notation
	1.7 Audience
	2 Introduction
	2.1 Objectives
	2.2 Requirements
	2.3 Dependencies
	2.4 Caveats and Assumptions
	2.5 Guiding Principles
	2.6 Conformance

	3 JSON Schema Architecture
	3.1 Basic architecture
	3.1.1 JSON serialization in a RESTful context
	3.1.2 Overall JSON Schema Structure

	3.2 Versioning and "$id"
	3.3 General naming rules moving from CCTS to JSON
	3.4 JSON schema landscape
	3.5 Data types
	3.5.1 Primitive Data Types
	3.5.2 Approved Core Component Types
	3.5.3 Unqualified Data Types
	3.5.4 Qualified Data Types for Date and Time
	3.5.5 Other Qualified Data Types

	3.6 Restriction and Extension
	3.6.1 Restriction
	3.6.2 Extension
	3.6.3 Publication and reusing contextualization

	3.7 ABIE and BBIE representation in JSON Schema
	3.7.1 ASBIE representation in JSON Schema supporting document based and resource-based information

	4 Appendix A: Complete Example
	4.1 Certificate of Origin Model
	4.2 JSON Schema serialization

	5 Appendix B: Naming and Design Rules List
	6 Appendix C: Glossary

